Revisión del potencial de obtención de biohidrógeno a partir de microalgas en Colombia
Resumen
El hidrógeno es un vector energético indispensable pensando en una transición a un sistema descarbonizado y las microalgas son uno de los recursos más prometedores para su producción. El objetivo de este trabajo es realizar una revisión de estudios realizados para la producción de biohidrógeno a partir de microalgas para determinar y evaluar los diferentes métodos de producción y aquellos factores que los afectan, así como sus limitaciones, considerando investigaciones realizadas en todo el mundo y especialmente en Colombia. Los resultados han demostrado que la fermentación oscura tiene varias ventajas en comparación con otros métodos: no requiere grandes espacios de cultivo, la producción de hidrógeno es rápida y eficiente, y se pueden obtener subproductos valiosos. Esto convierte al biohidrógeno en una alternativa energética atractiva para el país.
Descargas
Citas
[2] C. Acar, and I. Dincer, “Review and evaluation of hydrogen production options for better environment”. Journal of cleaner production., vol. 218, pp. 835-849, 2019.
[3] H. Singh, and D. Das, “Biohydrogen from microalgae. In Handbook of Microalgae-Based Processes and Products”. Academic Press, 2020, pp. 391-418.
[4] D. Das, N. Khanna, and C.N. Dasgupta, “Biohydrogen production: fundamentals and technology advances”. CRC Press, 2014, pp. 370.
[5] K. Dos Santos et al., “Hydrogen production in the electrolysis of water in Brazil, a review”. Renewable and Sustainable Energy Reviews., vol. 68, pp. 563-571, 2017.
[6] J. Jimenez-Llanos et al., “Sustainable biohydrogen production by Chlorella sp. microalgae: A review”. International Journal of Hydrogen Energy., vol. 45(15), pp. 8310-8328, 2020.
[7] M. G. Romero, “Biocombustibles y producción de biohidrógeno”. MoleQla: revista de Ciencias de la Universidad Pablo de Olavide., (38), pp. 8, 2020.
[8] Y. Pardo-Cárdenas et al., “Environmental assessment of microalgae biodiesel production in Colombia: comparison of three oil extraction systems”. CT&F Ciencia, Tecnología y Futuro., vol. 5(2), pp. 85-100, 2013.
[9] C. Posten, and C. Walter, “Microalgal biotechnology: integration and economy”. Walter de Gruyter, 2012, pp. 319.
[10] D. C. Gonzales, D. M. Hernandez, y A. T. R. Chaparro, “Producción de biohidrógeno a partir de microalgas”. Energética., vol. 47, pp. 51-64, 2016.
[11] M. Oey et al., “Challenges and opportunities for hydrogen production from microalgae”. Plant biotechnology journal., vol. 14(7), pp. 1487-1499, 2016.
[12] E. Jacob-Lopes et al., “Handbook of Microalgae-Based Processes and Products: Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioactive Compounds”. Academic Press, 2020, pp. 905.
[13] K. Chandrasekhar, Y. J. Lee, and D. W. Lee, “Biohydrogen production: strategies to improve process efficiency through microbial routes”. International journal of molecular sciences., vol. 16(4), pp. 8266-8293, 2015.
[14] K. Batyrova, and P.C. Hallenbeck, “Sustainability of biohydrogen production using engineered algae as a source”. In Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer. pp.163-180, 2017.
[15] A. I. Osman et al., “Critical challenges in biohydrogen production processes from the organic feedstocks”. Biomass Conversion and Biorefinery., pp. 1-19, 2020.
[16] D. M. Revelo, N. H. Hurtado, y J. O. Ruiz, “Celdas de combustible microbianas (CCMs): Un reto para la remoción de materia orgánica y la generación de energía eléctrica”. Información tecnológica., vol 24(6), pp. 17-28, 2013.
[17] B. Zhang et al., “Nitrogen-doped activated carbon as a metal free catalyst for hydrogen production in microbial electrolysis cells”. RSC Advances., vol. 4(90), pp. 49161-49164, 2014.
[18] A. Saravanan et al., “Microbial electrolysis cells and microbial fuel cells for biohydrogen production: current advances and emerging challenges”. Biomass Conversion and Biorefinery., pp. 1-21, 2020.
[19] S. Chader et al., “Biohydrogen production using green microalgae as an approach to operate a small proton exchange membrane fuel cell”. International journal of hydrogen energy., vol. 36(6), pp. 4089-4093, 2011.
[20] E. B. Estrada-Arriaga et al., “Assessment of a novel single-stage integrated dark fermentation-microbial fuel cell system coupled to proton-exchange membrane fuel cell to generate bio-hydrogen and recover electricity from wastewater”. Biomass and Bioenergy., vol. 147, pp. 106016, 2021.
[21] L. Wobbe, and C. Remacle, “Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories”. Journal of biotechnology., vol. 201, pp. 28-42.
[22] S. P. Slocombe, J. R. Benemann, “Microalgal production for biomass and high-value products”. CRC Press, 2017, pp. 325.
[23] S. K. Kim, “Handbook of marine microalgae: Biotechnology advances”. Academic Press, 2015, pp. 585.
[24] P.M. Budiman, and T.Y. Wu, “Role of chemicals addition in affecting biohydrogen production through photofermentation”. Energy Conversion and Management., vol. 165, pp. 509-527, 2018.
[25] A. Melis, “Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency”. Plant science., vol. 177(4), pp. 272-280, 2009.
[26] E. Eroglu, and A. Melis, “Photobiological hydrogen production: recent advances and state of the art”. Bioresource technology., vol. 102(18), pp. 8403-8413, 2011.
[27] A. Pandey et al., “Biofuels from algae”. Newnes, 2013, pp. 338.
[28] D. Nagarajan et al., “Recent insights into biohydrogen production by microalgae–From biophotolysis to dark fermentation”. Bioresource technology., vol. 227, pp. 373-387, 2017.
[29] T. K. Antal, T. E. Krendeleva, and A. B. Rubin, “Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production”. Applied microbiology and biotechnology., vol. 89(1), pp. 3-15, 2011.
[30] D. J. Lee, K. Y. Show, and A. Su, “Dark fermentation on biohydrogen production: pure culture”. Bioresource technology., vol. 102(18), pp. 8393-8402, 2011.
[31] D. Das, and T.N. Veziroglu, “Advances in biological hydrogen production processes”. International journal of hydrogen energy., vol. 33(21), pp. 6046-6057, 2008.
[32] O. Bičáková, and P. Straka, “Production of hydrogen from renewable resources and its effectiveness”. International Journal of Hydrogen Energy., vol. 37(16), pp. 11563-11578, 2012.
[33] B. P. Nobre et al., “A biorefinery from Nannochloropsis sp. microalga–extraction of oils and pigments. Production of biohydrogen from the leftover biomass”. Bioresource technology., vol. 135, pp. 128-136, 2013.
[34] C. Y. Chen, H. Y. Chang, and J. S. Chang, “Producing carbohydrate-rich microalgal biomass grown under mixotrophic conditions as feedstock for biohydrogen production”. International journal of hydrogen energy., vol. 41(7), pp. 4413-4420, 2016.
[35] R. Wirth et al., “Anaerobic gaseous biofuel production using microalgal biomass–a review”. Anaerobe., vol. 52, pp. 1-8, 2018.
[36] K. Paramesh et al., “Enhancement of biological hydrogen production using green alga Chlorococcum minutum”. International Journal of Hydrogen Energy., vol. 43(8), pp. 3957-3966, 2018.
[37] H. R. Preisig, and R. A. Andersen, “Historical review of algal culturing techniques”. Algal culturing techniques., vol. 65, pp. 79-82, 2005.
[38] Y. Wong et al., “Growth medium screening for chlorella vulgaris growth and lipid production”. J. Aquac. Mar. Biol., vol. 6(1), pp. 00143, 2017.
[39] W.M. Alalayah et al., “Experimental investigation parameters of hydrogen production by algae Chlorella Vulgaris”. In International conference on Chemical, Environment & Biological Sciences (CEBS-2014)., pp. 17-18, Sept. 2014.
[40] F. L. Alfonso Moreno, A. I. Páez Morales, y D. Torres Ramírez, “Evaluación de la producción de hidrógeno usando la bacteria clostridium butyricum en un reactor tipo cstr a escala laboratorio”. Publicaciones Universidad de América - Revista de Investigación., vol. 6(1), pp. 19-37, 2013.
[41] A. Ciranna, “Biohydrogen production in extreme conditions: a comprehensive study of the fermentative metabolism of a polyextremophilic bacterium”. Tesis doctoral, Universidad de Tecnología de Tampere, Finlandia, 2014.
[42] Y. C. Jeon, C. W. Cho, and Y. S. Yun, “Measurement of microalgal photosynthetic activity depending on light intensity and quality”. Biochemical Engineering Journal., vol. 27(2), pp. 127-131, 2005.
[43] C. Posten, “Design principles of photo‐bioreactors for cultivation of microalgae”. Engineering in Life Sciences., vol. 9(3), pp. 165-177, 2009.
[44] L. Li, L. Zhang, and J. Liu, “Proteomic analysis of hydrogen production in Chlorella pyrenoidosa under nitrogen deprivation”. Algal Research., vol. 53, pp. 102143, 2021.
[45] A. A. Volgusheva et al., “Comparative analyses of H2 photoproduction in magnesium‐and sulfur‐starved Chlamydomonas reinhardtii cultures”. Physiologia plantarum., vol. 161(1), pp. 124-137, 2017.
[46] D. Gonzalez-Ballester, J. L. Jurado-Oller, and E. Fernandez, “Relevance of nutrient media composition for hydrogen production in Chlamydomonas”. Photosynthesis research., vol. 125(3), pp. 395-406, 2015.
[47] F. Oliveira et al., “Hydrogen photoproduction using Chlorella sp. through sulfur-deprived and hybrid system strategy”. Chemical Engineering Transactions., vol. 43, pp. 301-306, 2015.
[48] R. Wirth et al., “Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process”. Biotechnology for biofuels., vol. 8(1), pp. 1-14., 2015.
[49] B. Ge et al., “Evaluation of various sulfides for enhanced photobiological H2 production by a dual-species co-culture system of Chlamydomonas reinhardtii and Thiomonas intermedia”. Process Biochemistry., vol. 82, pp. 110-116, 2019.
[50] A. Dubini, and M.L. Ghirardi, “Engineering photosynthetic organisms for the production of biohydrogen”. Photosynthesis research., vol. 123(3), pp. 241-253, 2015.
[51] S. N. Kosourov et al., “Maximizing the hydrogen photoproduction yields in Chlamydomonas reinhardtii cultures: the effect of the H2 partial pressure”. International journal of hydrogen energy., vol. 37(10), pp. 8850-8858, 2012.
[52] D. Das, “A road map on biohydrogen production from organic wastes”. INAE Letters., vol. 2(4), 153-160, 2017.
[53] K. Skjånes et al., “Design and construction of a photobioreactor for hydrogen production, including status in the field”. Journal of applied phycology., vol. 28(4), pp. 2205-2223, 2016.
[54] A. M. Lakaniemi et al., “Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass”. Biotechnology for biofuels., vol. 4(1), pp. 1-12, 2011.
[55] L. Xu et al., “Improved hydrogen production and biomass through the co-cultivation of Chlamydomonas reinhardtii and Bradyrhizobium japonicum”. International Journal of Hydrogen Energy., vol. 41(22), pp. 9276-9283, 2016.
[56] G. Lakatos et al., “Factors influencing algal photobiohydrogen production in algal-bacterial co-cultures”. Algal research., vol. 28, pp. 161-171, 2017.
[57] N. Rashid et al., “Characteristics of hydrogen production by immobilized cyanobacterium Microcystis aeruginosa through cycles of photosynthesis and anaerobic incubation”. Journal of Industrial and Engineering Chemistry., vol. 15(4), pp. 498-503, 2009.
[58] S. Fouchard et al., “Investigation of H2 production using the green microalga Chlamydomonas reinhardtii in a fully controlled photobioreactor fitted with on-line gas analysis”. International journal of hydrogen energy., vol. 33(13), pp. 3302-3310, 2008.
[59] A. K. Sadvakasova et al., “Bioprocesses of hydrogen production by cyanobacteria cells and possible ways to increase their productivity”. Renewable and Sustainable Energy Reviews., vol. 133, pp. 110054, 2020.
[60] B. A. Cho, and R. W. M. Pott, “The development of a thermosiphon photobioreactor and analysis using Computational Fluid Dynamics (CFD)”. Chemical Engineering Journal., vol. 363, pp. 41-154, 2019.
[61] B. Aslanbay Guler et al., “Computational fluid dynamics modelling of stirred tank photobioreactor for Haematococcus pluvialis production: Hydrodynamics and mixing conditions”. Algal Research., vol. 47, pp. 101854, 2020.
[62] S. R. Vargas et al., “Anaerobic phototrophic processes of hydrogen production by different strains of microalgae Chlamydomonas sp.” FEMS microbiology letters., vol.365(9), pp. fny073, 2018.
[63] T. T. Giang et al., “Improvement of hydrogen production from Chlorella sp. biomass by acid-thermal pretreatment”. PeerJ., vol. 7, pp. e6637, 2019.
[64] W.M. Alalayah et al., “Influence of culture parameters on biological hydrogen production using green algae Chlorella vulgaris”. Rev Chim., vol. 66, pp. 788-791, 2015.
[65] N. Rashid, K. Lee, and Q. Mahmood, “Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods. Bioresource technology., vol. 102(2), pp. 2101-2104, 2011.
[66] A. Ruiz-Marin, Y. Canedo-López, and P. Chávez-Fuentes, “Biohydrogen production by Chlorella vulgaris and Scenedesmus obliquus immobilized cultivated in artificial wastewater under different light quality”. AMB Express., vol. 10(1), pp. 1-7, 2020.
[67] F. L. Alfonso Moreno, y D. Rubio Fernández, “Generación de biohidrógeno por un proceso de biofotólisis directa utilizando un cultivo mixto de microalgas”. Publicaciones Universidad de América - Revista de Investigación., vol. 3(2), pp. 7-18, 2010.
[68] A. P. Batista et al., “Combining urban wastewater treatment with biohydrogen production–an integrated microalgae-based approach”. Bioresource technology., vol. 184, pp. 230-235, 2015.
[69] A. P. Batista et al., “Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum”. Fuel., vol. 117, pp. 537-543, 2014.
[70] A. Bedoya et al., “Producción biológica de hidrógeno: una aproximación al estado del arte”. Dyna., vol. 75(154), pp. 137-157, 2008.
[71] A.P. Frias, Á. D. González-Delgado, and V. Kafarov, “Microalgae biorefinery trought optimization of strain composition and biomass consumption”. Chemical Engineering., vol. 43, pp. 589-594 2015.
[72] M. Bernal et al., “Evaluating Colombian Clostridium spp. strains hydrogen production using glycerol as substrate”. Electronic journal of biotechnology., vol. 16(2), pp. 5-5, 2013.