Degradación fotocatalítica de la orto y meta-Nitroanilina en un reactor cilíndrico – parabólico compuesto
Resumen
La fotodegradación catalítica con radiación solar es una de las tecnologías más económicas y de alta utilidad en los procesos avanzados de oxidación para el tratamiento de contaminantes en aguas. La técnica utiliza semiconductores que aprovechan un porcentaje de la longitud de onda emitida por el sol para la generación de especies par, hueco-electrón, que inician la conversión de las moléculas a degradar. En la presente investigación se estudia la fotodegradación de los sistemas orto y meta-Nitroanilina en un reactor Heliofotocatalítico cilindroparabólico compuesto (CPC) construido a microescala, empleando TiO2 como catalizador en suspensión. Se determinaron las condiciones óptimas en términos de caudal de solución, especie derivada del ácido y tipo de agente oxidante. Los resultados revelan un mayor porcentaje de degradación con el uso de peróxido de hidrógeno sin importar el caudal para ambos compuestos y una calidad de agua aceptable bajo análisis biológico sobre especies guppies (Poecilia reticulata).
Descargas
Citas
A. Saupe, High-Rate Biodegradation of 3- and 4-Nitroaniline. (1999). Chemosphere. 1999; 39 (13):2325-2346. DOI: 10.1016/S0045-6535(99)00141-1.
T. Reemtsma, M. Jekel, Organic Pollutants in the Water Cycle: Properties, Occurrence, Analysis and Environmental Relevance of Polar Compounds. (2006). WILEY-VCH Verlag GmbH & Co. KGaA. Westein, Germany. ISBN: 3-527-31297-8.
-Nitroaniline. International Congress and Convention Association (ICCA). (2001). SIAM 13. UNEP Publications. Bern, Switzerland. Disponible en: http://webnet.oecd.org/HPV/UI/handler.axd?id=eb9e5317-7ea4-4b78-95a4-67f54aef5c9a.
M-Nitroaniline. International Congress and Convention Association (ICCA). (2001). SIAM 13. UNEP Publications. Bern, Switzerland. Disponible en: http://webnet.oecd.org/HPV/UI/handler.axd?id=f1521fd5-3151-43e0-8445-6d9add4c834c.
M. Habibi, M. Khaledisardashti, M. Montazerozohori. Photocatalytic Mineralisation of Aniline Derivatives in Aquatic Systems Using Semiconductor Oxides. Annali di Chimica. (2004). 94 (5-6): 421-428. DOI: 10.1002/adic.200490051.
V. Mirkhani, S. Tangestaninejad, M. Moghadam, M.H. Habibi, A. Rostami Vartooni. Photodegradation of aromatic amines by Ag-TiO2 photocatalyst. Journal of the Iranian Chemical Society. (2009). 6 (4): 800–807. DOI: 10.1007/BF03246172.
Y. Wang, Y. Zhang, G. Zhao, M. Wu, M. Li, D. Li, Y. Zhang, Y, Zhang. Electrosorptive photocatalytic degradation of highly concentrated p-nitroaniline with TiO2 nanorod-clusters/carbon aerogel electrode under visible light, Separation and Purification Technology. (2013). 104: 229-237. DOI: 10.1016/j.seppur.2012.11.009.
S. Jian-Hui, S. Sheng-Peng, F. Mao-Hong, G. Hui-Qin, Q. Li-Ping, S. Rui-Xia. A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. Journal of Hazardous Materials. (2007). 148 (1–2): 172-177. DOI: 10.1016/j.jhazmat.2007.02.022.
H. Ma, M. Wang, C. Pu, J. Zhang, S. Zhao, S. Yao, J. Xiong. Transient and steady-state photolysis of p-nitroaniline in aqueous solution, Journal of Hazardous Materials. (2009). 165 (1–3): 867-873. DOI: 10.1016/j.jhazmat.2008.10.077.
K. Li, Z. Zheng, J. Feng, J. Zhang, X. Luo, G. Zhao, X. Huang. Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk, Journal of Hazardous Materials, (2009). 166 (2–3): 1180-1185. DOI: 10.1016/j.jhazmat.2008.12.035.
S. Silambarasan, A. Vangnai.. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites, Journal of Hazardous Materials. (2016). 302: 426-436. DOI: 10.1016/j.jhazmat.2015.10.010
Y. Wang, Y. Zhang, G. Zhao, M. Wu, M. Li, D. Li, Y. Zhang, Y. Zhang. Electrosorptive photocatalytic degradation of highly concentrated p-nitroaniline with TiO2 nanorod-clusters/carbon aerogel electrode under visible light, Separation and Purification Technology. (2013). 104: 229-237. DOI: 10.1016/j.seppur.2012.11.009.
S. Gautam, S. Kamble, S. Sawant, V. Pangarkar. Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation, Chemical Engineering Journal. (2005). 110 (1–3): 129-137. DOI: 10.1016/j.cej.2005.03.021.
P. Surolia, R. Tayade, R. Jasra. TiO2-Coated Cenospheres as Catalysts for Photocatalytic Degradation of Methylene Blue, p-Nitroaniline, n-Decane, and n-Tridecane under Solar Irradiation. Industrial & Engineering Chemistry Research. (2010). 49 (19): 8908-8919. DOI: 10.1021/ie100388m.
K. Zheng, T. Zhang, P. Lin, Y. Han, H. Li, R. Ji, H. Zhang. 4-Nitroaniline Degradation by TiO2 Catalyst Doping with Manganese, Journal of Chemistry, (2015). 1-6. DOI: 10.1155/2015/382376
W. Huang, R. Liu. Photocatalytic Degradation of p-Nitroaniline with Composite Photocatalyst H3P12W40/TiO2. Advanced Materials Research. (2011). 233-235: 967-970. DOI: 10.4028/www.scientific.net/AMR.233-235.967.
Y. Deng, R. Zhao. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr Pollution Rep. (2015). 1 (3): 167-176. DOI:10.1007/s40726-015-0015-z.
M. Cho, H. Chung, W. Choi, J. Yoon. Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol. (2005). 71 (1): 270–275. DOI: 10.1128/AEM.71.1.270-275.2005
H. Ikai, K. Nakamura, M. Shirato, T. Kanno, A. Iwasawa, K. Sasaki. Photolysis of hydrogen peroxide, an effective disinfection system via hydroxyl radical formation. Antimicrob Agents Chemother. (2010). 54 (12): 5086–5091. DOI: 10.1128/AAC.00751-10.
C. Gottschalk, JA. Libra, A. Saupe. Ozonation of water and waste water: a practical guide to understanding ozone and its applications. John Wiley & Sons. (2009). ISBN: 978-3-527-31962-6.
U. Gaya, A. Abdullah. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews. (2008). 9 (1): 1-12. DOI:10.1016/j.jphotochemrev.2007.12.003.
A. Lannoy, N. Kania, R. Bleta, S. Fourmentin, C. Machut-Binkowski, E. Monflier, A. Ponchel. Photocatalysis of Volatile Organic Compounds in water: Towards a deeper understanding of the role of cyclodextrins in the photodegradation of toluene over titanium dioxide, Journal of Colloid and Interface Science, 461 (1): 317-325. (2016). DOI: 10.1016/j.jcis.2015.09.022.P. Wetzel, “Thyristorschutz mit Halbleitern – witschaftlich und sicher”, BBC Nachrichten, bd. 59, h. ¾, s. 152-158, 1977.
A. Ozogu, N. Aisien, U. Udiba, N. Chukwurah. Photocatalytic Degradation of Ethylbenzene on Aqueous Solutions Using Titanium Dioxide as Catalyst, American Journal of Environmental Engineering and Science. (2016). 3 (1): 26-32.
V. Gandhi, M. Mishra, P. Joshi. Titanium Dioxide Catalyzed Photocatalytic Degradation of Carboxylic Acids from Waste Water: A Review, Materials Science Forum, (2012). 712: 175-189, DOI: 10.4028/www.scientific.net/MSF.712.175.
J. Cáceres Vázquez. Evaluación analítica y optimización de procesos de oxidación avanzada en planta piloto solar. Tesis doctoral. Departamento de Hidrogeología y Química Analítica Universidad de Almeria, España. (2002). Disponible en: http://www.revistavirtualpro.com/biblioteca/evaluacion-analitica-y-optimizacion-de-procesos-de-oxidacion-avanzada-en-planta-piloto-solar
D. Rodríguez, B. López, G. Peñuela, S. Agudelo. Evaluación de la degradación y mineralización del malatión usando fotocatálisis mediante un colector solar. Revista colombiana de Química. (2009). 38 (2): 221-234.
T. Ochiai, A. Fujishima. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. (2012). 13 (4): 247-262. DOI 10.1016/j.jphotochemrev.2012.07.001
S. Mendes, O. Sousa, M. Costa. Heterogeneous Photocatalysis Remediation of Wastewater Polluted by Indigoid Dyes, Textile Wastewater Treatment. Chapter 5: 93-114. (2016). Intech. DOI: 10.5772/63790.
S. Gómez, H. Cortes. Degradación de orto y meta nitroanilinas por procesos de fotocatálisis heterogénea. Tesis de Química. Universidad del Quindío, Armenia, Quindío. (2012).
H. Gutiérrez, R. Gutiérrez, E. Herles, M. Hernández, P. Horna, P. Hoyos, C. Huby, M. Jiménez, L. Jiménez, A. Kollmann, B. Castañeda, L. Ibáñez, C. Scotto. Análisis comparativo de la toxicidad del extracto acuoso en cocimiento de la harina de maca (Lepidium meyenii, Walp) en tres especies de animales modelos: Artemia franciscana (Crustácea, Anostraca), pez Guppy (Poecilia Reticulata) y ratón (Mus musculus), Horizonte Médico. (2007). 7 (2): 103-108
J. Iannacone, R. Onofre, O. Huanqui. Efectos ecotoxicologicos del cartap sobre poecilia reticulata “guppy’’ (poecilidae) y paracheirodon innesi “neon tetra’’ (characidae). Gayana (Concepción). (2007). 71 (2): 170-177. DOI: 10.4067/S0717-65382007000200005.
I. Martínez, D. Verdiell, R. Montoliu, I. Hurtado. Sistema de seguimiento y análisis de la calidad del agua para consumo humano mediante el estudio de la respuesta comportamental en peces expuestos a sustancias tóxicas. (2010). Anales de Biología 32: 29-38.
P. Ramírez, C. Mendoza. Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo La experiencia en México. Secretaría de Medio Ambiente y Recursos Naturales (Semarnat). Ciudad de Mexico, Mexico, (2008). Disponible: http://www2.inecc.gob.mx/publicaciones/download/573.pdf.
T. Panunto, Z. Urbanczyk, R. Johnson, C. Etter. Hydrogen-bond formation in nitroanilines: the first step in designing acentric materials, Journal of the American Chemical Society. (1987). 109 (25): 7786-7797. DOI: 10.1021/ja00259a030.