Influencia de la degradación del Clorpirifos en la detección analítica utilizando biosensores: revisión del estado actual y aspectos futuros

  • Mariett Alejandra Torres Gutierrez universidad San Sebastian
  • Karla Andrea Pozo Gallardo Universidad San Sebastián
  • Víctor Manuel Díaz García Universidad San Sebastián

Resumen

El Clorpirifós (CP) es un pesticida ampliamente utilizado, que se relaciona a diversos daños en salud y que ha obtenido importancia, dado a su ubicuidad en todas las matrices ambientales, unido a la necesidad de un monitoreo oportuno para evaluar el estado y tasas de descarga al medioambiente. Por su parte, los factores ambientales favorecen la degradación de CP y disipación en el medio ambiente, pero, dificulta su trazabilidad ambiental y detección real en las diversas matrices ambientales. El uso de biosensores proporciona técnicas analíticas prometedoras para la detección de diversos compuestos de importancia ambiental como lo es el CP en la actualidad, pero se desconoce si la degradación natural de CP afectaría el correcto reconocimiento de CP por parte de los biosensores, influyendo en su uso como herramienta de trazabilidad de descarga de CP al medioambiente. El objetivo principal de esta revisión es abordar los recientes avances de biosensores para la detección de CP, sus desafíos en la detección en muestras reales asociados a la degradación de CP y los aspectos futuros asociados al monitoreo ambiental, trazabilidad y detección del CP, que constituye una amenaza importante para la salud humana.

     Palabras clave—Degradación, Elementos de reconocimiento biológico, Metabolitos, Monitoreo Ambiental, Trazabilidad, aptámero.

 

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Mariett Alejandra Torres Gutierrez, universidad San Sebastian

Químico Marino (2015) y Diplomado en Sistemas de Información Geográfica (2018) de la Universidad católica de la santísima Concepción, Chile. Magister (C) en Innovación en Biociencias y Bioingeniería de la Universidad San Sebastián, Chile. Experiencia laboral en monitoreo de compuestos orgánicos persistente (COPs) y contaminación por microplásticos en matrices ambientales, organización profesional Facultad de Ingeniería y Tecnología de la Universidad San Sebastián, Chile. Las áreas de interés monitoreo, detección e identificación de compuestos tóxicos con efectos en salud pública y medio ambiente.

Karla Andrea Pozo Gallardo, Universidad San Sebastián

Biólogo Marino, Universidad Católica de la Santísima Concepción. Chile (1998). PhD Ciencias Ambientales, Universidad di Siena, Italia (2004). Experiencia en el estudio de la distribución de Contaminantes orgánicos persistentes (COPs), destino ambiental de COPs, Química de la Atmósfera, Contaminación ambiental,  Marcadores tempranos de contaminación en ambientes acuáticos, Oceanografía Química y toxicología Ambiental. Directora de dos proyectos Fondecyt Regulares Chile y Coordinadora Grupo de Contaminación Ambiental por Microplásticos y Contaminantes Orgánicos Persistentes de la facultad de Ingeniería y tecnología de la universidad San Sebastián, Chile Afiliación al Centro de Investigación de Compuestos Tóxicos en el Medio Ambiente (RECETOX) República Checa y Universidad San Sebastián, Chile. Área de investigaciones contaminantes ambientales y emergentes en matrices abióticas y bióticas.

Víctor Manuel Díaz García, Universidad San Sebastián

Bioquímico, Universidad de Santiago de Chile. PhD. en Bioquímica -especialidad Nanotecnología Universidad de Chile. Experiencia en el área de investigación orientado al uso de nanopartículas, para el desarrollo de biosensores optoelectrónicos basados en procesamiento de señales ópticas emitidas por nanopartículas de oro (plasmónica) y puntos cuánticos (fotónica), para detección de contaminantes alimentarios y ambientales. Coordinador Núcleo de Nanotecnología y Materiales Avanzados de la Facultad de ingeniería y tecnología de la Universidad San Sebastián, Chile. Área de Investigación Aplicación de nano materiales en biomedicina y nano sensores.

 

 

Citas

R. H. Coupe and J. D. Blomquist, “Water-soluble pesticides in finished water of community water supplies,” J. / Am. Water Work. Assoc., vol. 96, no. 10, pp. 56–68, 2004.

Q. Zhang, S. Zheng, S. Wang, W. Wang, H. Xing, and S. Xu, “Chlorpyrifos induced oxidative stress to promote apoptosis and autophagy through the regulation of miR-19a-AMPK axis in common carp,” Fish Shellfish Immunol., vol. 93, no. July, pp. 1093–1099, 2019.

F. Edition, “Manual on development and use of FAO and WHO specifications for pesticides Second Revision Available only on the Internet,” no. November 2010.

S. Akhtar, S. T. S. Gilani, and N. Hasan, “Persistence of chlorpyrifos and fenpropathrin alone and in combination with fertilizers in soil and their effect on soil microbes,” Pakistan J. Bot., vol. 36, no. 4, pp. 863–870, 2004.

E. M. John and J. M. Shaike, “Chlorpyrifos: pollution and remediation,” Environ. Chem. Lett., vol. 13, no. 3, pp. 269–291, 2015.

P. C. Mane et al., “Highly sensitive label-free bio-interfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide,” Sci. Rep., vol. 10, no. 1, pp. 1–14, 2020.

M. Cycoń, M. Wójcik, and Z. Piotrowska-Seget, “Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil,” Chemosphere, vol. 76, no. 4, pp. 494–501, 2009.

S. Liu, Z. Zheng, and X. Li, “Advances in pesticide biosensors: Current status, challenges, and future perspectives,” Anal. Bioanal. Chem., vol. 405, no. 1, pp. 63–90, 2013.

C. J. Vörösmarty et al., “Global threats to human water security and river biodiversity,” Nature, vol. 467, no. 7315, pp. 555–561, 2010.

S. L. Pimm et al., “The biodiversity of species and their rates of extinction, distribution, and protection,” Science (80), vol. 344, no. 6187, 2014.

R. Bala et al., “Detection of organophosphorus pesticide – Malathion in environmental samples using peptide and aptamer based nanoprobes,” Chem. Eng. J., vol. 311, pp. 111–116, 2017.

S. Cui et al., “Effects of season and sediment-water exchange processes on the partitioning of pesticides in the catchment environment: Implications for pesticides monitoring,” Sci. Total Environ., vol. 698, p. 134228, 2020.

M. Arias-Estévez, E. López-Periago, E. Martínez-Carballo, J. Simal-Gándara, J. C. Mejuto, and L. García-Río, “The mobility and degradation of pesticides in soils and the pollution of groundwater resources,” Agric. Ecosyst. Environ. vol. 123, no. 4, pp. 247–260, 2008.

P. Chawla, R. Kaushik, V. J. Shiva Swaraj, and N. Kumar, “Organophosphorus pesticides residues in food and their colorimetric detection,” Environ. Nanotechnology, Monit. Manag. vol. 10, pp. 292–307, 2018.

M. Tankiewicz, “Determination of selected priority pesticides in high water fruits and vegetables by modified QuEChERS and GC-ECD with GC-MS/MS confirmation,” Molecules, vol. 24, no. 3, 2019.

M. Citartan and T. H. Tang, “Recent developments of aptasensors expedient for point-of-care (POC) diagnostics,” Talanta, vol. 199, no. February, pp. 556–566, 2019.

C. Zhang et al., “Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay,” Biosens. Bioelectron. vol. 55, pp. 216–219, 2014.

S. Uniyal and R. K. Sharma, “Technological advancement in electrochemical biosensor-based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects,” Biosens. Bioelectron. vol. 116, no. May, pp. 37–50, 2018.

N. George, P. Chauhan, S. Sondhi, S. Saini, N. Puri, and N. Gupta, “Biodegradation and analytical methods for detection of organophosphorous pesticide: chlorpyrifos,” Int. J. Pure Appl. Sci. Technol., vol. 20, no. 2, p. 79, 2014. D. Hu et al., “Pesticide residues in vegetables in four regions of Jilin Province,” Int. J. Food Prop., vol. 23, no. 1, pp. 1150–1157, 2020.

M. S. Hossain, A. N. M. Fakhruddin, M. A. Z. Chowdhury, and M. K. Alam, “Degradation of chlorpyrifos, an organophosphorus insecticide in aqueous solution with gamma irradiation and natural sunlight,” J. Environ. Chem. Eng., vol. 1, no. 3, pp. 270–274, 2013.

Y. Yao, G. Wang, G. Chu, X. An, Y. Guo, and X. Sun, “The development of a novel biosensor based on gold nanocages/graphene oxide-chitosan modified acetylcholinesterase for organophosphorus pesticide detection,” New J. Chem., vol. 43, no. 35, pp. 13816–13826, 2019.

M. A. Dar, G. Kaushik, and J. F. Villarreal-Chiu, “Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: A review,” J. Environ. Manage. vol. 239, no. February, pp. 124–136, 2019.

J. M. Giddings, M. W. Williams, K. R. Solomon, and J. P. Giesy, Reviews of environmental contamination and toxicology: risks to aquatic organisms from use of chlorpyrifos in the United States, vol. 231. 2014.

O. Lockridge, L. Verdier, and L. M. Schopfer, “Half-life of chlorpyrifos oxon and other organophosphorus esters in aqueous solution,” Chem. Biol. Interact., vol. 311, no. June, p. 108788, 2019.

X. Wu et al., “A molecular approach to rationally constructing specific fluorogenic substrates for the detection of acetylcholinesterase activity in live cells, mice brains and tissues,” Chem. Sci., vol. 11, no. 41, pp. 11285–11292, 2020.

M. Ali et al., “Chlorpyrifos mediated oxidative damage and histopathological alterations in freshwater fish Oncorhynchus mykiss in Northern Pakistan,” Aquac. Res., vol. 51, no. 11, pp. 4583–4594, 2020.

A. L. Rathod and R. K. Garg, “Chlorpyrifos poisoning and its implications in human fatal cases: A forensic perspective with reference to Indian scenario,” J. Forensic Leg. Med., vol. 47, pp. 29–34, 2017.

Y. Jiao et al., “A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos,” Sensors Actuators, B Chem., vol. 243, pp. 1164–1170, 2017.

S. O. Pehkonen and Q. Zhang, “Critical Reviews in Environmental Science and Technology the Degradation of Organophosphorus Pesticides in Natural Waters. Environ. Sci. Technol., no. November 2013, pp. 37–41, 2010.

L. K. Chai, M. H. Wong, and H. C. Bruun Hansen, “Degradation of chlorpyrifos in humid tropical soils,” J. Environ. Manage. vol. 125, pp. 28–32, 2013.

Baez, M.E., Espinoza, J., Silva, R. et al. “Sorption-desorption behavior of pesticides and their degradation products in volcanic and nonvolcanic soils: interpretation of interactions through two-way principal component analysis”. Environ Sci Pollut Res 22, 8576–8585 (2015). https://doi.org/10.1007/s11356-014-4036-8.

I. Md Meftaul, K. Venkateswarlu, R. Dharmarajan, P. Annamalai, and M. Megharaj, “Pesticides in the urban environment: A potential threat that knocks at the door,” Sci. Total Environ., vol. 711, p. 134612, 2020.

C. S. Caramello, C. F. Cowper, M. J. Jorge, J. E. Pérez, and L. C. Jorge, “Anormalidades morfológicas nucleares en hematíes del pez Prochilodus linneatus expuesto al clorpirifós,” Rev. Vet., vol. 30, no. 2, p. 64, 2019.

C. S. Pundir, A. Malik, and Preety, “Bio-sensing of organophosphorus pesticides: A review,” Biosens. Bioelectron. vol. 140, no. May 2019.

K. Pozo et al., “Occurrence of chlorpyrifos in the atmosphere of the Araucanía Region in Chile using polyurethane foam-based passive air samplers,” Atmos. Pollut. Res., vol. 7, no. 4, pp. 706–710, 2016.

S. Cortes et al., “First measurement of human exposure to current use pesticides (CUPs) in the atmosphere of central Chile: The case study of Mauco cohort,” Atmos. Pollut. Res., vol. 11, no. 4, pp. 776–784, 2020.

M. J. Climent, E. Herrero-Hernández, M. J. Sánchez-Martín, M. S. Rodríguez-Cruz, P. Pedreros, and R. Urrutia, “Residues of pesticides and some metabolites in dissolved and particulate phase in surface stream water of Cachapoal River basin, central Chile,” Environ. Pollut. vol. 251, pp. 90–101, 2019.

M. Bhanti and A. Taneja, “Contamination of vegetables of different seasons with organophosphorous pesticides and related health risk assessment in northern India,” Chemosphere, vol. 69, no. 1, pp. 63–68, 2007.

T. Silipunyo et al., “Determination of Organophosphate Pesticides Residues in Fruits, Vegetables and Health Risk Assessment among Consumers in Chiang Mai Province, Northern Thailand,” Res. J. Environ. Toxicol. vol. 11, no. 1, pp. 20–27, 2016.

INIA, “Boletín Inia N° 348,” pp. 22–23, 2017.

C. Cruzeiro, M. Â. Pardal, E. Rocha, and M. J. Rocha, “Occurrence and seasonal loads of pesticides in surface water and suspended particulate matter from a wetland of worldwide interest—the Ria Formosa Lagoon, Portugal,” Environ. Monit. Assess. vol. 187, no. 11, 2015.

R. N. Lerch, C. H. Lin, K. W. Goyne, R. J. Kremer, and S. H. Anderson, “Vegetative Buffer Strips for Reducing Herbicide Transport in Runoff: Effects of Buffer Width, Vegetation, and Season,” J. Am. Water Resour. Assoc., vol. 53, no. 3, pp. 667–683, 2017.

J. Bellas and I. Gil, “Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa,” Environ. Pollut. vol. 260, p. 114059, 2020.

F. Wang, J. Yao, H. Chen, K. Chen, P. Trebše, and G. Zaray, “Comparative toxicity of chlorpyrifos and its oxon derivatives to soil microbial activity by combined methods,” Chemosphere, vol. 78, no. 3, pp. 319–326, 2010.

A. Masiá, J. Campo, A. Navarro-Ortega, D. Barceló, and Y. Picó, “Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data,” Sci. Total Environ., vol. 503–504, pp. 58–68, 2015.

H. B. Mathur, H. C. Agarwal, S. Johnson, and N. Saikia, “Analysis of Pesticide Residues in Blood Samples from Villages of Punjab INVESTIGATORS CSE Report: Analysis of Pesticide Residues in blood samples from villages of Punjab,” no. January 2005, 2005.

M. Bigot et al., “Air-Seawater Exchange of Organochlorine Pesticides in the Southern Ocean between Australia and Antarctica,” Environ. Sci. Technol., vol. 50, no. 15, pp. 8001–8009, 2016.

K. W. Hwang, S. C. Yoo, S. E. Lee, and J. K. Moon, “Residual level of chlorpyrifos in lettuces grown on chlorpyrifos-treated soils,” Appl. Sci., vol. 8, no. 12, 2018.

L. Wang, Z. Liu, J. Zhang, Y. Wu, and H. Sun, “Chlorpyrifos exposure in farmers and urban adults: Metabolic characteristic, exposure estimation, and potential effect of oxidative damage,” Environ. Res., vol. 149, pp. 164–170, 2016.

R. Sanghi, M. K. K. Pillai, T. R. Jayalekshmi, and A. Nair, “Organochlorine and organophosphorus pesticide residues in breast milk from Bhopal, Madhya Pradesh, India,” Hum. Exp. Toxicol., vol. 22, no. 2, pp. 73–76, 2003.

Y. Han et al., “Pesticide residues in nut-planted soils of China and their relationship between nut/soil,” Chemosphere, vol. 180, pp. 42–47, 2017.

D. Marchis, G. L. Ferro, P. Brizio, S. Squadrone, and M. C. Abete, “Detection of pesticides in crops: A modified QuEChERS approach,” Food Control, vol. 25, no. 1, pp. 270–273, 2012.

V. H. Estellano, K. Pozo, C. Efstathiou, K. Pozo, S. Corsolini, and S. Focardi, “Assessing levels and seasonal variations of current-use pesticides (CUPs) in the Tuscan atmosphere, Italy, using polyurethane foam disks (PUF) passive air samplers,” Environ. Pollut. vol. 205, pp. 52–59, 2015.

F. Arduini, F. Ricci, C. S. Tuta, D. Moscone, A. Amine, and G. Palleschi, “Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian, Blue-modified screen-printed electrode,” Anal. Chim. Acta, vol. 580, no. 2, pp. 155–162, 2006.

G. Koukouvinos et al., “Fast simultaneous detection of three pesticides by a White Light Reflectance Spectroscopy sensing platform,” Sensors Actuators, B Chem., vol. 238, pp. 1214–1223, 2017.

P. B. Kurt-Karakus, C. Teixeira, J. Small, D. Muir, and T. F. Bidleman, “Current-use pesticides in inland lake waters, precipitation, and air from Ontario, Canada,” Environ. Toxicol. Chem., vol. 30, no. 7, pp. 1539–1548, 2011.

I. Cavoski, P. Caboni, G. Sarais, and T. Miano, “Degradation and persistence of rotenone in soils and influence of temperature variations,” J. Agric. Food Chem., vol. 56, no. 17, pp. 8066–8073, 2008.

A. C. Belfroid, M. Van Drunen, M. A. Beek, S. M. Schrap, C. A. M. Van Gestel, and B. Van Hattum, “Relative risks of transformation products of pesticides for aquatic ecosystems,” Sci. Total Environ., vol. 222, no. 3, pp. 167–183, 1998.

Simo O. Pehkonen & Qi Zhang. “The Degradation of Organophosphorus Pesticides in Natural Waters: A Critical Review”, in Environmental Science and Technology, 32:1, 17-72, 2002.

DOI: 10.1080/10643380290813444.

R. Mosquera B. and G. A. Peñuela M., “Biodegradación del malatión utilizando microorganismos nativos de suelos agrícolas”, Rev. Colomb. Cienc. Pecu. vol. 22, no. 2, pp. 189-198, Jul. 2009.

M. Zhang et al., “Non-target effects of repeated chlorothalonil application on soil nitrogen cycling: The key functional gene study,” Sci. Total Environ., vol. 543, pp. 636–643, 2016.

V. Andreu and Y. Picó, “Determination of pesticides and their degradation products in soil: Critical review and comparison of methods,” TrAC - Trends Anal. Chem., vol. 23, no. 10–11, pp. 772–789, 2004.

E. Borrás, M. Ródenas, M. Vázquez, T. Vera, and A. Muñoz, “Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon,” Atmos. Environ., vol. 123, pp. 112–120, 2015.

A. Muñoz, M. Ródenas, E. Borrás, M. Vázquez, and T. Vera, “The gas-phase degradation of chlorpyrifos and chlorpyrifos-oxon towards OH radical under atmospheric conditions,” Chemosphere, vol. 111, pp. 522–528, 2014.

C. Coscollà, A. Muñoz, E. Borrás, T. Vera, M. Ródenas, and V. Yusà, “Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area,” Atmos. Environ., vol. 95, pp. 29–35, 2014

K. E. Murray, S. M. Thomas, and A. A. Bodour, “Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment,” Environ. Pollut. vol. 158, no. 12, pp. 3462–3471, 2010.

M. Liu et al., “Aptasensors for pesticide detection,” Biosens. Bioelectron. vol. 130, no. November 2018, pp. 174–184, 2019.

F. Di Nardo and L. Anfossi, Commercial biosensors for detection of food additives, contaminants, and pathogens. Elsevier Inc., 2020.

X. Wang, X. Lu, and J. Chen, “Development of biosensor technologies for analysis of environmental contaminants,” Trends Environ. Anal. Chem., vol. 2, pp. 25–32, 2014.

J. S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra, and S. Duhan, “Nanotechnology: The new perspective in precision agriculture,” Biotechnol. Reports, vol. 15, pp. 11–23, 2017.

B. Bucur, F. D. Munteanu, J. L. Marty, and A. Vasilescu, “Advances in enzyme-based biosensors for pesticide detection,” Biosensors, vol. 8, no. 2, pp. 1–28, 2018.

C. I. L. Justino, A. C. Duarte, and T. A. P. Rocha-Santos, “Recent progress in biosensors for environmental monitoring: A review,” Sensors (Switzerland), vol. 17, no. 12, 2017.

F. Li, Z. Yu, X. Han, and R. Y. Lai, “Electrochemical aptamer-based sensors for food and water analysis: A review,” Anal. Chim. Acta, vol. 1051, pp. 1–23, 2019.

S. Feng, Y. Hu, L. Ma, and X. Lu, “Development of molecularly imprinted polymers-surface-enhanced Raman spectroscopy/colorimetric dual sensor for determination of chlorpyrifos in apple juice,” Sensors Actuators, B Chem., vol. 241, pp. 750–757, 2017.

B. Kuswandi, C. I. Fikriyah, and A. A. Gani, “An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue,” Talanta, vol. 74, no. 4, pp. 613–618, 2008.

Q. Luo, F. Yu, F. Yang, C. Yang, P. Qiu, and X. Wang, “A 3D-printed self-propelled, highly sensitive mini-motor for underwater pesticide detection,” Talanta, vol. 183, pp. 297–303, 2018.

O. Ademuyiwa et al., “Erythrocyte acetylcholinesterase activity as a surrogate indicator of lead-induced neurotoxicity in occupational lead exposure in Abeokuta, Nigeria,” Environ. Toxicol. Pharmacol. vol. 24, no. 2, pp. 183–188, 2007.

L. Rassaei, F. Marken, M. Sillanpää, M. Amiri, C. M. Cirtiu, and M. Sillanpää, “Nanoparticles in electrochemical sensors for environmental monitoring,” TrAC - Trends Anal. Chem., vol. 30, no. 11, pp. 1704–1715, 2011.

J. Wyrzykowska et al., “THE VISIBLE PLANT CELL: BIOSENSORS AND BIORECEPTORS.”

P. Röthlisberger and M. Hollenstein, “Aptamer chemistry,” Adv. Drug Deliv. Rev., vol. 134, pp. 3–21, 2018.

A. Verdian, “Apta-nanosensors for detection and quantitative determination of acetamiprid – A pesticide residue in food and environment,” Talanta, vol. 176, pp. 456–464, 2018.

M. Guler, V. Turkoglu, and Z. Basi, “Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGO-NH2 nanocomposites,” Electrochim. Acta, vol. 240, pp. 129–135, 2017.

W. Wei, X. Zong, X. Wang, L. Yin, Y. Pu, and S. Liu, “A disposable amperometric immunosensor for chlorpyrifos-methyl based on immunogen/platinum doped silica sol-gel film modified screen-printed carbon electrode,” Food Chem., vol. 135, no. 3, pp. 888–892, 2012.

D. C. Rodríguez, S. Carvajal, and G. Peñuela, “Effect of chlorpyrifos on the inhibition of the enzyme acetylcholinesterase by cross-linking in water-supply samples and milk from dairy cattle,” Talanta, vol. 111, pp. 1–7, 2013.

J. Halámek, J. Přibyl, A. Makower, P. Skládal, and F. W. Scheller, “Sensitive detection of organophosphates in river water by means of a piezoelectric biosensor,” Anal. Bioanal. Chem., vol. 382, no. 8, pp. 1904–1911, 2005.

J. Cao et al., “Rapid colorimetric determination of the pesticides carbofuran and dichlorvos by exploiting their inhibitory effect on the aggregation of peroxidase-mimicking platinum nanoparticles,” Microchim. Acta, vol. 186, no. 6, 2019.

G. Xu et al., “A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection,” Talanta, vol. 178, no. May 2017, pp. 1046–1052, 2018.

M. Roushani, A. Nezhadali, and Z. Jalilian, “An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods,” Microchim. Acta, vol. 185, no. 12, 2018.

D. Capoferri, F. Della Pelle, M. Del Carlo, and D. Compagnone, “Affinity sensing strategies for the detection of pesticides in food,” Foods, vol. 7, no. 9, 2018.

J. Liu, Z. Guan, Z. Lv, X. Jiang, S. Yang, and A. Chen, “Improving sensitivity of gold nanoparticle-based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle,” Biosens. Bioelectron. vol. 52, pp. 265–270, 2014.

S. Nagabooshanam, S. Roy, A. Mathur, I. Mukherjee, S. Krishnamurthy, and L. M. Bharadwaj, “Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things,” Sci. Rep., vol. 9, no. 1, pp. 1–9, 2019.

N. K. Mogha, V. Sahu, M. Sharma, R. K. Sharma, and D. T. Masram, “Biocompatible ZrO2- reduced graphene oxide immobilized AChE biosensor for chlorpyrifos detection,” Mater. Des. vol. 111, pp. 312–320, 2016.

Y. Mao et al., “A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles,” Talanta, vol. 168, pp. 279–285, 2017.

N. Kaur and N. Prabhakar, “Current scenario in organophosphates detection using electrochemical biosensors,” TrAC - Trends Anal. Chem., vol. 92, pp. 62–85, 2017.

F. Wang, J. Yao, H. Chen, K. Chen, P. Trebše, and G. Zaray, “Comparative toxicity of chlorpyrifos and its oxon derivatives to soil microbial activity by combined methods,” Chemosphere, vol. 78, no. 3, pp. 319–326, 2010.

F. Arduini, S. Cinti, V. Scognamiglio, and D. Moscone, “Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis,” Microchim. Acta, vol. 183, no. 7, pp. 2063–2083, 2016.

S. Andreescu, L. Barthelmebs, and J. L. Marty, “Immobilization of acetylcholinesterase on screen-printed electrodes: Comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides,” Anal. Chim. Acta, vol. 464, no. 2, pp. 171–180, 2002.

I. Ion, A. Culetu, and D. Gherase, “Environmental Applications of Carbon-Based Nanomaterials. Acetylcholinesterase Biosensors for Organophosphate Pesticide Analysis,” Environ. Appl. Carbon-Based Nanomater. Acetylcholinesterase Biosens. Organophosphate Pestic. Anal., pp. 34–50, 2006.

M. Gao, “Detection by Using Fe 3 O 4 Nanoparticle Aggregates as Color Reagents,” Anal. Chem., pp. 6778–6784, 2011.

K. Sankar et al., “Digital image-based quantification of chlorpyrifos in water samples using a lipase embedded paper-based device,” Talanta, vol. 208, no. September 2019, p. 120408, 2020.

X. Sun, L. Qiao, X. Sun, and X. Wang, “Pesticide residues rapid detection in vegetables real samples based on nanomaterial-modified acetylcholinesterase biosensor,” Micro Nano Lett., vol. 8, no. 7, pp. 330–335, 2013.

Y. P. Chen et al., “A rapid and sensitive fluoroimmunoassay based on quantum dot for the detection of chlorpyrifos residue in drinking water,” J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, vol. 45, no. 6, pp. 508–515, 2010.

S. Islam et al., “Microfluidic-based graphene field effect transistor for femtomolar detection of chlorpyrifos,” Sci. Rep., vol. 9, no. 1, pp. 1–7, 2019.

N. Prabhakar et al., “Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor, Analytica Chimica Acta, Vol. 589, 2007.

R. Pratima et al., “Nucleic acid sensor for insecticide detection,” J. Mol. Recognit. 2008; 21: 217–223.

K. Zhang et al., “Ligand Replacement-Induced Fluorescence Switch of Quantum Dots for Ultrasensitive Detection of Organophosphorothioate Pesticides,” Anal. Chem., (82), 9579–9586, 2010.

C. Xien et al., “Surface Molecular Self-Assembly for Organophosphate Pesticide Imprinting in Electropolymerized Poly(p-aminothiophenol) Membranes on a Gold Nanoparticle Modified Glassy Carbon Electrode. ”Anal. Chem., (82), 241–249, 2010.

P. Weerathunge et al., “Dynamic interactions between peroxidase-mimic silver NanoZymes and chlorpyrifos-specific aptamers enable highly-specific pesticide sensing in river water,” Anal. Chim. Acta, vol. 1083, pp. 157–165, 2019.

N. Cheng, etal., “Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides,Biosensors and Bioelectronics,Volume 117, pp. 75-83 2018.

W. Whangsuk et al., “Specific detection of the pesticide chlorpyrifos by a sensitive genetic-based whole cell biosensor, Analytical Biochemistry, Volume 493, pp.11-13, 2016.

Publicado
2021-12-24
Cómo citar
Torres Gutierrez, M., Pozo Gallardo, K., & Díaz García, V. (2021). Influencia de la degradación del Clorpirifos en la detección analítica utilizando biosensores: revisión del estado actual y aspectos futuros. Entre Ciencia E Ingeniería, 15(30), 9-21. https://doi.org/10.31908/19098367.2102
Sección
Artículos