Cabri and Geometric Thinking in ScholasticContexts, Geometric Transformations
DOI:
https://doi.org/10.31908/19098367.686Keywords:
Dynamic Geometry, resolution of problems, transformations.Abstract
The development of dynamic geometry has needed radical changes in the demonstration teaching. Traditional geometry approach created doubts in the students mind about the validity of their empirical observations, and then it motivated them for a deductive demonstration.
There are different types of software in Dynamic Geometry, which have been designed in order to give students an atmosphere in a micro world style for the experimental exploration of flat geometry. In contrast, dynamic geometry is precise, so performing complex construction and then modifying is easy and fast.
The main objective is proposing alternatives in geometry learning and teaching, and therefore teachers will be able to design, organize and implement activities with a dynamic geometry software support. Consequently they will form learning communities which contribute to prepare the understanding and the authentic use of this technology.
This paper aims to analyze the progress of students’ geometric thinking by starting from the geometric transformations, covering basic concepts up to retake the lengths, areas and volumes of the objects of Euclidian geometry. It ensures that the students will have a set of concepts, properties, algorithms and methods for problem solving, which are common to a great number of mathematical subjects studied throughout all the courses, such as construction of flat representations in trigonometry, analytical geometry, algebra, and calculation, among others.
Downloads
References
Bartolomé, A. (1999). Nuevas tecnologías en el aula. Barcelona: Ediciones Graó.
Battista, M., y Clements, D. (1995). Geometry and Prof. The Mathematics Teacher. Vol. 88 Nº 1. Enero 1995.
Botero, Maria Margarita; Arteaga, Jose Ricardo; La Geometría con Cabri, un programa de capacitación de maestros. REVISTA TEXTO Y CONTEXTO. (1999) , Vol. 37
Cid, E. y Muñoz, M. (2003). Matemática primero medio, texto del estudiante. Santiago: Arrayan ediciones S.A.
De Villiers, M. (1999). The Future of Secondary School Geometry. La lettre de la preuve, University of South Africa (UNISA), Pretoria, South Africa. Novembre-Déciembre. 1999.
Gallego, R. (1998). Discurso constructivista sobre las tecnologías. Santafé de Bogotá: Editorial Magisterio.
Gutiérrez, A. Jaime, (1990) Una propuesta de Fundamentación para la Enseñanza de la Geometría: El modelo de van Hiele, Práctica en Educación Matemática: Capítulo 6o, pág. 295-384. Ediciones Alfar, Sevilla.
Gutiérrez, A., y Jaime, A. (1998). . Bogotá: Una empresa docente.
Ministerio de Educación (1998). Matemática. Programa de Estudio Primer Año Medio. Santiago: Mineduc.
Ministerio de Educación Nacional. (1998) Estandares Básicos de Competencias en Matemáticas. MEN. Bogotá, pág. 61
Salomón, C. (1987). Entornos de aprendizaje con ordenadores. Barcelona: Editorial Paidós.
Spiegel, A. (1997). La escuela y la computadora. Buenos Aires: Ediciones Novedades Educativas.
Vergara, C. y otros (2000). Matemática I educación media. Santiago: Editorial Santillana.
Vizcarro, C. y León, J. (1997). Nuevas tecnologías para el aprendizaje. Madrid: Ediciones Pirámide.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Entre ciencia e ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










