Residuos vegetales generados en plazas de mercado: alternativas para su valorización en la obtención de metabolitos de interés industrial
DOI:
https://doi.org/10.31908/19098367.2884Palabras clave:
Biomasa, biomoléculas, biorrefinería, economía circular, enzimasResumen
La generación de residuos de biomasa, como los residuos vegetales, es una de las problemáticas ambientales de mayor impacto y las estrategias de aprovechamiento de estos con frecuencia están enfocadas a la obtención de productos como bioabonos, compostaje o comida para animales. La tendencia en el área ha mostrado que los procesos de biorrefinería de la biomasa residual se ha constituido como una estrategia que, dentro del marco de la economía circular, puede valorizar estos residuos obteniendo biomoléculas de mayor interés para su aplicación en diferentes sectores industriales, generando un valor agregado a los procesos donde se generan estos residuos. El objetivo de esta revisión es presentar diferentes alternativas de aprovechamiento de residuos vegetales generados en plazas de mercado en la obtención de productos con potencial industrial. Para esto, se realizó una búsqueda bibliográfica en bases de datos con una restricción de términos asociados al tema de estudio, que fueron clasificados de acuerdo a su aplicación en la obtención de diferentes productos, encontrando que dentro de las alternativas de uso se presenta el aprovechamiento de estos residuos para la elaboración de sustratos en la producción de enzimas microbianas, y de biomoléculas como polifenoles, carotenos, licopeno, vainillina, pectina, colorantes y productos como aceites esenciales.
Descargas
Referencias
[1] J. Malinauskaite, H. Jouhara, D. Czajczynska, P. Stanchev, E. Katsou, R. Rostkowski, R. J. Thorne, J. Colón, S. Ponsá, S., F. Al-Mansour, L. Anguilano, R. Krzyzynska, I. López, I. A. Vlasopoulos, N. Spencer, “Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe,” 2017, Energy, vol. 141, pp. 2013–2044. doi: 10.1016/j.energy.2017.11.128
[2] J. A. Mora-Villalobos et al., “Tropical agroindustrial biowaste revalorization through integrative biorefineries—review part I: coffee and palm oil by-products,” Springer Science and Business Media Deutschland GmbH, vol. 13, pp 1469–1487, enero, 2023, doi: 10.1007/s13399-021-01442-9.
[3] L. A. Pfaltzgraff, M. De Bruyn, E. C. Cooper, V. Budarin, and J. H. Clark, “Food waste biomass: A resource for high-value chemicals,” Green Chemistry, vol. 15, no. 2, pp. 307–314, 2013, doi: 10.1039/c2gc36978h.
[4] Rezaei, M.; Liu, B, “Food loss and waste in the food supply chain,” Natfruit, pp. 26–27, julio 2017. [Online]. Available: https://openknowledge.fao.org/server/api/core/bitstreams/36cb45bc-392c-41fb-97f1-90ca1f16ee7f/content
[5] T. Sathish, R. Saravanan, M. V. Depoures, B. Palanikumar, M. Rajasimman, and S. Rajkumar, “Environmental remediation at vegetable marketplaces through production of biowaste catalysts for biofuel generation,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-31687-5.
[6] C. F. V. López, A. M. F. Montealegre, Y. D. Andrade, “Caracterización y análisis del aprovechamiento de residuos vegetales generados en la central de abastos Merca-Neiva,” Ingeniería y Región, vol. 22, pp.4-13, 2019.
[7] D. Tripathi, G. Raikhy, and D. Kumar, “Chemical elicitors of systemic acquired resistance — Salicylic acid and its functional analogs,” Curr Plant Biol, vol. 17, no. March, pp. 48–59, 2019, doi: 10.1016/j.cpb.2019.03.002.
[8] N. Raina, S. Chuetor, D. Elalami, S. Tayibi, and A. Barakat, “Biomass Valorization for Bioenergy Production: Current Techniques, Challenges, and Pathways to Solutions for Sustainable Bioeconomy,” Bioenergy Res, Agosto 2024, doi: 10.1007/s12155-024-10792-x.
[9] R. C. Fierascu, I. Fierascu, S. M. Avramescu, and E. Sieniawska, “Recovery of natural antioxidants from agro-industrial side streams through advanced extraction techniques,” Molecules, vol. 24, no. 23, pp. 1–29, 2019, doi: 10.3390/molecules24234212.
[10] F. Nadeem, M. Tayyab, T. Mehmood, R. Naseer, and S. Iqbal, “Optimization of Fermentative Parameters for Hyperproduction of Protease from Aspergillus viridi using Lignocellulosic Byproducts as Sole Substrate,” Waste Biomass Valorization, vol. 15, pp. 3761–3771, 2024, doi: 10.1007/s12649-023-02416-w.
[11] O. H. Pardo Cuervo, C. A. Rosas, and G. P. Romanelli, “Valorization of residual lignocellulosic biomass in South America: a review,” Environmental Science and Pollution Research, vol. 31, pp. 44575–44607, Jul. 2024, doi: 10.1007/s11356-024-33968-6.
[12] K. J. Siatoya Ramírez, Y. A. Arce Portilla, “Aprovechamiento de los residuos generados en la plaza de mercado de corabastos para la elaboración de productos de valor agregado: Contexto actual, perspectivas y posibles soluciones,” Tesis, Universidad Jorge Tadeo Lozano, Bogotá , Colombia, 2019.
[13] M. Kapoor, D. Panwar, G. S Kaira, “Bioprocesses for Enzyme Production Using Agro-Industrial Wastes: Technical Challenges and Commercialization Potential”, En G. S. Dhillon & S. Kaur (Eds.), Agro-Industrial Wastes as Feedstock for Enzyme Production, Academic Press. 2016, cap. 3, pp. 61–93. Doi: 10.1016/B978-0-12-802392-1.00003-4
[14] N. Gopalan, K. M. Nampoothiri, Biotechnological Production of Enzymes Using Agro-Industrial Wastes: Economic Considerations, Commercialization Potential, and Future Prospects. En G. S. Dhillon & S. Kaur (Eds.), Agro-Industrial Wastes as Feedstock for Enzyme Production, Academic Press. 2016, cap. 14, pp. 313–330. Doi: 10.1016/B978-0-12-802392-1.00003-4
[15] E. M. Sánchez, J.P. Heredia, “Evaluación de residuos de cáscaras de papa como sustrato para la producción de amilasas a partir de Bacillus amyloliquefaciens A16,” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 44 no. 172, pp. 794-804, 2020.
[16] J.P. Heredia, E. M. Sánchez, “Evaluación de residuos de cáscaras de plátano y yuca para la producción de amilasas a partir de Bacillus amyloliquefaciens A16,” Biotecnol Apl., vol. 37, no. 4, pp. 3201-3205, 2020.
[17] J.P. Heredia, E. M. Sánchez, “Evaluation of sugarcane bagasse and flower stems as substrates for cellulase production by Bacillus amyloliquefaciens C18 A”, Research Journal of Biotechnology, vol. 16, no. 1, pp. 144-148, 2021.
[18] J. P. Heredia Martín and E. M. Sanchez Castelblanco, “Evaluación de microorganismos y sustratos obtenidos a partir de residuos orgánicos para la producción de celulasas,” Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 21, no. 2, pp. 50–61, Nov. 2023, doi: 10.18684/rbsaa.v21.n2.2023.2165.
[19] N. Melnichuk, M. J. Braia, P. A. Anselmi, M. R. Meini, D. Romanini, “Valorization of two agroindustrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation,” Waste Management, vol. 106, pp. 155–161, 2020. Doi: 10.1016/j.wasman.2020.03.025
[20] M. Marin, A. Sanchez, A. Artola, “Production and recovery of cellulases through solid-state fermentation of selected lignocellulosic wastes,” Journal of Cleaner Production, vol. 209, pp. 937–946, 2019. doi: 10.1016/j.jclepro.2018.10.264
[21] S. Ali et al., “Agricultural Waste Management by Production of Second-Generation Bioethanol from Sugarcane Bagasse Using Indigenous Yeast Strain,” Curr Microbiol, vol. 81, no. 6, Jun. 2024, doi: 10.1007/s00284-024-03668-y.
[22] P. Leite, C. Silva, J. M. Salgado, I. Belo, “Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes,” Industrial Crops and Products, vol. 137, pp. 315–322 2019. doi: 10.1016/j.indcrop.2019.04.044
[23] D. Haldar, M. K. Purkait, “Lignocellulosic conversion into value-added products: A review,” Process Biochemistry, vol. 89, pp. 110–133, 2020. doi: 10.1016/j.procbio.2019.10.001
[24] A. Mojumdar, J. Deka, “Recycling agro-industrial waste to produce amylase and characterizing amylase–gold nanoparticle composite. International” Journal of Recycling of Organic Waste in Agriculture, vol. 8, no. 1, pp 263–269, 2019. doi: 10.1007/s40093-019-00298-4
[25] K. Bhatt, S. Lal, S.; R, Srinivasan; B- Joshi, “Bioconversion of agriculture wastes to produce α-amylase from Bacillus velezensis KB 2216: Purification and characterization,” Biocatalysis and Agricultural Biotechnology, vol. 28, pp. 101703, 2020. doi: 10.1016/j.bcab.2020.101703
[26] J. S. Paul, E. Beliya, S. Tiwari, K. Patel, N. Gupta, S. K. Jadhav, “Production of biocatalyst α-amylase from agro-waste ‘rice bran’ by using Bacillus tequilensis TB5 and standardizing its production process,” Biocatalysis and Agricultural Biotechnology, vol. 26, pp. 101648. 2020. doi: 10.1016/j.bcab.2020.101648
[27] A. A. Salim, S. Grbavčić, N. Šekuljica, A. Stefanović, S. Jakovetić Tanasković, N. Luković, Z. Knežević-Jugović, “Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: The evaluation of substrate pretreatment methods,” Bioresource Technology, vol. 228, pp. 193–200, 2017. doi: 10.1016/j.biortech.2016.12.081
[28] M. Akpinar, R. Ozturk Urek, “Peach and Cherry Agroindustrial Wastes: New and Economic Sources for the Production of Lignocellulolytic Enzymes,” Acta Chimica Slovenica, vol. 64, no. 2, 2017. doi: 10.17344/acsi.2017.3265.
[29] S. Bajar, A. Singh, N.R. Bishnoi, “Exploration of low-cost agro-industrial waste substrate for cellulase and xylanase production using Aspergillus heteromorphus,” Applied Water Science, vol. 10, no. 6, pp. 153, 2020. doi: 10.1007/s13201-020-01236-w
[30] J. P. Heredia Martín and E. M. Sanchez Castelblanco, “Evaluación de microorganismos y sustratos obtenidos a partir de residuos orgánicos para la producción de celulasas,” Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 21, no. 2, pp. 50–61, Nov. 2023, doi: 10.18684/rbsaa.v21.n2.2023.2165.
[31] J. O. Unuofin, A. I. Okoh, U. U. Nwodo, “Utilization of agroindustrial wastes for the production of laccase by Achromobacter xylosoxidans HWN16 and Bordetella bronchiseptica HSO16,” Journal of Environmental Management, vol. 231, pp. 222–231, 2019. doi: 10.1016/j.jenvman.2018.10.016
[32] V. E. Pinheiro, M. Michelin, A. C. Vici, P. Z. De Almeida, M. De L. Teixeira De Moraes Polizeli, “Trametes versicolor laccase production using agricultural wastes: A comparative study in Erlenmeyer flasks, bioreactor and tray,” Bioprocess and Biosystems Engineering, vol. 43, no. 3, pp. 507–514. 2020. doi: 10.1007/s00449-019-02245-z
[33] T. M. Costa, K. L. Hermann, M. Garcia-Roman, R. D. C. S. C. Valle, L. B. B. Tavares, “Lipase production by Aspergillus niger grown in different agro-industrial wastes by solid-state fermentation,” Brazilian Journal of Chemical Engineering, vol. 34, pp. 419-427. 2017. doi: 10.1590/0104-6632.20170342s20150477
[34] W. M. De Azevedo, L. F. R. De Oliveira, M. A. Alcântara, A. M. T. De M. Cordeiro, K. S. F. Da S. C. Damasceno, C. F. De Assis, F. C. De Sousa Junior, “Turning cacay butter and wheat bran into substrate for lipase production by Aspergillus terreus NRRL-255,” Preparative Biochemistry & Biotechnology, vol. 50, no. 7, pp. 689–696. 2020. doi: 10.1080/10826068.2020.1728698
[35] J. Yan, B. Han, X. Gui, G. Wang, L. Xu, Y. Yan, C. Madzak, D. Pan, Y. Wang, G. Zha, L. Jiao, “Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agro-industrial Wastes for Feed,” Scientific Reports, vol. 8, no. 1, pp. 758. 2018. doi: 10.1038/s41598-018-19238-9
[36] A. Da S. Pereira, G. C. Fontes-Santana, P. F. F. Amaral, “Mango agro-industrial wastes for lipase production from Yarrowia lipolytica and the potential of the fermented solid as a biocatalyst,” Food and Bioproducts Processing, vol. 115, pp. 68–77. 2019. doi: 10.1016/j.fbp.2019.02.002
[37] M. De F. M. De Freitas, L. S. Cavalcante, E. J. Gudiña, S. C. Silverio, S. Rodrigues, L. R. Rodrigues, L. R. B. Goncalves, “Sustainable Lipase Production by Diutina rugosa NRRL Y-95 Through a Combined Use of Agro-Industrial Residues as Feedstock,” Applied Biochemistry and Biotechnology, vol. 193, no. 2, pp. 589–605, 2021. doi: 10.1007/s12010-020-03431-6
[38] V. Poondla, S. K. Yannam, S. N. Gummadi, R. Subramanyam, V. S. Reddy Obulam, “Enhanced production of pectinase by Saccharomyces cerevisiae isolate using fruit and agro-industrial wastes: Its application in fruit and fiber processing,” Biocatalysis and Agricultural Biotechnology, vol. 6, pp. 40–50, 2016. doi: 10.1016/j.bcab.2016.02.007
[39] S. Singh, B. K. Bajaj, “Agroindustrial/Forestry Residues as Substrates for Production of Thermoactive Alkaline Protease from Bacillus licheniformis K-3 Having Multifaceted Hydrolytic Potential,” Waste and Biomass Valorization, vol. 8, no. 2, pp. 453–462, 2017. doi: 10.1007/s12649-016-9577-2
[40] A. F. Gonçalves, E. S. Dos Santos, G. R. De Macedo, “Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: A proposal to utilization of microdistillery,” Renewable and Sustainable Energy Reviews, vol. 50, pp. 1287–1303, 2015. doi: https://doi.org/10.1016/j.rser.2015.05.047
[41] C. Lombardelli, I. Benucci, C. Mazzocchi, M. Esti, “Betalain. Extracts from Beetroot as Food Colorants: Effect of Temperature and UV-Light on Storability,” Plant Foods Hum Nutr., Vol. 76, no. 3, pp. 347-353, 2021. doi: 10.1007/s11130-021-00915-6
[42] L. D. Shirahigue, S. R. Ceccato-Antonini, “Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries,” Ciência Rural, vol. 50, no. 4, e20190857, 2020.
[43] W. Pérez-Mora, J. Mojica-Gomez, “Aprovechamiento de residuos agroindustriales de la industria vinícola del valle de Sáchica”, . SENNOVA-SENA- Centro de Gestión Industrial, Bogotá, Colombia, 2019.
[44] P. D. Donato, V. Taurisano, G. Tommonaro, V. Pasquale, J. Manuel, S. Jiménez, S. Pascual, A. De-Poli, B. Nicolaus, “Biological Properties of Polyphenols Extracts from Agro-Industry’s Wastes,” Waste and Biomass Valorization, vol. 9, pp. 1567–1578, 2018. doi: 10.1007/s12649-017-9939-4
[45] G. Singh, S. Sahu, S. Bharti, and S. K. Arya, “Significance of enzymes for the recycling of wasted non-food biomass to value added products: A sustainable stewardship towards the cleaner environment,” Oct. 01, 2024, Institution of Chemical Engineers. doi: 10.1016/j.psep.2024.07.063.
[46] S. C. Liu et al., “Biological conversion of lignin-derived ferulic acid from wheat bran into vanillin,” Int J Biol Macromol, vol. 281, Nov. 2024, doi: 10.1016/j.ijbiomac.2024.136406.
[47] A. Domínguez González, R. Hernández Soto, J. M. Salgado Román, N. Ardila Arias, A. Hernández Maldonado, “Obtención de compuestos aromáticos por oxidación de lignina con lacasa inmovilizada en alginato,” Agrociencia, vol. 52, no. 2, pp. 191–202, 2018.
[48] F. Mota, P. Rodrigues, J. M. Loureiro, A. Rodrigues, “Recovery of Vanillin and Syringaldehyde from Lignin Oxidation: A Review of Separation and Purification Processes,” Separation & Purification Reviews, vol. 45, no. 3, 227-259, 2016. doi: 10.1080/15422119.2015.1070178
[49] A. Parra-Campos, L.E. Ordóñez-Santos, “Natural pigment extraction optimization from coffee exocarp and its use as a natural dye in French meringue,” Food Chem., Vol 1, no. 285, pp. 59-66, Julio 2019. doi: 10.1016/j.foodchem.2019.01.158.
[50] M. Faustino, M. Veiga, P. Sousa, E. M. Costa, S. Silva, “Agro-Food Byproducts as a New Source of Natural Food Additives,” Molecules, vol. 24, pp. 1–23, 2019. doi: 10.3390/molecules24061056
[51] I. Viera, A. Pérez-Gálvez, M. Roca, “Green Natural Colorants,” Molecules, vol. 24, no. 1, 154, 2019. doi: 10.3390/molecules24010154
[52] L. S. B. A. Wolfman, “El mundo de los carotenoides: colores, alimentos y salud,” Journal of Chemical Information and Modeling, vol. 53, no. 9, pp. 1689–1699, 2013. doi: 10.1017/CBO9781107415324.004
[53] E. Rizk, A. T. El-Kady, A. R. El-Bialy, “Charactrization of carotenoids (lyco-red) extracted from tomato peels and its uses as natural colorants and antioxidants of ice cream,” Annals of Agricultural Sciences, vol. 59, no. 1, pp. 53-61, 2014. doi: 10.1016/j.aoas.2014.06.008.
[54] C. Cubas, M. Gloria Lobo, and M. González, “Optimization of the extraction of chlorophylls in green beans (Phaseolus vulgaris L.) by N,N-dimethylformamide using response surface methodology,” Journal of Food Composition and Analysis, vol. 21, no. 2, pp. 125–133, Mar. 2008, doi: 10.1016/j.jfca.2007.07.007.
[55] M. Derrien, M. Aghabararnejad, A. Gosselin, Y. Desjardins, P. Angers, and Y. Boumghar, “Optimization of supercritical carbon dioxide extraction of lutein and chlorophyll from spinach by-products using response surface methodology,” LWT Food Science and Technology, vol. 93, pp. 79–87, Jul. 2018, doi: 10.1016/j.lwt.2018.03.016.
[56] J. Usano-Alemany, J. Palá-Paúl, S. Díaz, “Aceites esenciales: conceptos básicos y actividad antibacteriana,” Reduca (Biología). Serie Botánica, vol. 7, no. 2, pp. 60–70, 2014.
[57] L. A. Gallego, “Aceites esenciales: un mercado potencial para el aprovechamiento de la biodiversidad colombiana,” Revista Ingeniería y Sociedad, vol. 1, no. 13, pp. 22–8, 2018, Accessed: Nov. 13, 2024. [Online]. Available: https://revistas.udea.edu.co/index.php/ingeso/article/view/338136
[58] E. Roselló-Soto, M. Koubaa, A. Moubarik, R. P. Lopes, J. A. Saraiva, N. Boussetta, N. Grimi, F. J. Barba, “Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: Non-conventional methods for the recovery of high-added value compounds,” Trends in Food Science and Technology, vol. 45, no. 2, pp. 296-310, 2015. doi: 10.1016/j.tifs.2015.07.003
[59] R. Bocker and E. K. Silva, “Sustainable pectin-based film for carrying phenolic compounds and essential oil from Citrus sinensis peel waste,” Food Biosci, vol. 61, Oct. 2024, doi: 10.1016/j.fbio.2024.104526.
[60] L. Arthuz López, W. Pérez-Mora. “Low environmental impact alternatives for the recycling of the expanded polystyrene worldwide,” Informador Técnico, vol. 83, no 2, pp 209–219.
[61] K. H. C. Baser, N. Arslan, “Oil Rose (Rosa damascena)”, en Medicinal and Aromatic Plants of the Middle-East Springer Dordrecht, 2014, cap. 116, pp. 281–304. doi: 10.1007/978-94-017-9276-9_16
[62] X. S. Liu, B. Gao, X. L. Li, W. N. Li, Z. A. Qiao, L. Han, “Chemical Composition and Antimicrobial and Antioxidant Activities of Essential Oil of Sunflower (Helianthus annuus L.) Receptacle,” Molecules, vol. 25, no. 22, pp. 5244, 2020. doi: 10.3390/molecules25225244
[63] L. F. Salomé-Abarca, R. M. Soto-Hernández, N. Cruz-Huerta, V. A. González-Hernández, “Chemical composition of scented extracts obtained from calendula officinalis by three extraction methods,” Botanical Sciences, vol. 93, no. 3, pp. 633–638, 2015. doi:10.17129/botsci.143
[64] M. Patsalou, A. Chrysargyris, N. Tzortzakis, M. Koutinas, “A biorefinery for conversion of citrus peel waste into essential oils, pectin, fertilizer and succinic acid via different fermentation strategies,” Waste Management, vol. 113, pp. 469–477, 2020. doi: 10.1016/j.wasman.2020.06.020
[65] R. Podestá, C. M. Pagliosa, M. A. Vieira, J. G. Provesi, E. R. Amante, A. L. B. Zeni, I. Raitz, R. A. Rebelo, “Identification of volatile compounds in thinning discards from plum trees (Prunus salicina Lindl.) cultivar Harry Pickstone,” Ciência e Tecnologia de Alimentos, vol. 31, no 3, pp. 710–713. 2011. doi:10.1590/s0101-20612011000300024
[66] V. Loganathan, L. Vijayan, R. Balakrishnaraja, and S. Abdullah, “Optimization of microwave-assisted extraction of Tamarindus indica seed oil: An in silico approach to development of potential hypolipidemic compound for reducing LDL cholesterol,” Measurement: Food, vol. 13, Mar. 2024, doi: 10.1016/j.meafoo.2023.100125.
[67] S. D. Teixeira, J. L. Fiorio, D. Galvan, C. Sefstrom, P. M. Cogo, V. S. Junior, M. B. Rodrigues, A. P. P. K Hendges, B. H. L. De Noronha Sales Maia, T. G. S. Benghi, “Investigation on chemical composition and optimization of essential oil obtainment from waste Pinus taeda L. using hydrodistillation,” Brazilian Archives of Biology and Technology, vol. 59, pp. 1–10. 2016. doi:10.1590/1678-4324-2016150043
[68] A. L. Pantoja-Chamorro, A. M. Hurtado-Benavides, H. A. Martinez-Correa, “Caracterización de aceite de semillas de maracuyá (Passiflora edulis Sims.) procedentes de residuos agroindustriales obtenido con CO2 supercrítico,” Acta Agronomica, vol. 66, no. 2, pp. 178–185. 2017. doi: 10.15446/acag.v66n2.57786
[69] Y. Gonzalez-Diaz, M. Veliz-Jaime, “Extracción y caracterización del aceite esencial de mango obtenido de residuos agroindustriales,” Revista Tecnología Química, vol. 40, no 3, pp. 488–501, 2020.
[70] C. S. Tavares, A. Martins, M. L. Faleiro, M. G. Miguel, L. C. Duarte, J. A. Gameiro, L. B. Roseiro, A. C. Figueiredo, “Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L.,” Industrial Crops and Products, vol. 144 pp. 112034. 2020. doi: 10.1016/j.indcrop.2019.112034
[71] C. Campalani, F. Chioggia, E. Amadio, M. Gallo, F. Rizzolio, M. Selva, A. Perosa, “Supercritical CO2 extraction of natural antibacterials from low value weeds and agro-waste,” Journal of CO2 Utilization, vol. 40, pp. 101198, 2020. doi: 10.1016/j.jcou.2020.101198
[72] F. Brahmi, O. Mokhtari, B. Legssyer, I. Hamdani, A. Asehraou, I. Hasnaoui, Y. Rokni, K. Diass, I. Oualdi, A. Tahani, “Chemical and biological characterization of essential oils extracted from citrus fruits peels” Materials Today: Proceedings, vol. 45, pp. 7794–7799. 2021. doi: 10.1016/j.matpr.2021.03.587
[73] M. Zaccardelli, G. Roscigno, C. Pane, G. Celano, M. Di Matteo, M. Mainente, A. Vuotto, T. Mencherini, T. Esposito, A. Vitti, E. De Falco, “Essential oils and quality composts sourced by recycling vegetable residues from the aromatic plant supply chain,” Industrial Crops and Products, vol. 162, pp. 113255, 2021. doi: 10.1016/j.indcrop.2021.113255
[74] B. Danilović, N. Dordević, B. Milićević, B. Šojić, B. Pavlić, V. Tomović, D. Savić, “Application of sage herbal dust essential oils and supercritical fluid extract for the growth control of Escherichia coli in minced pork during storage,” LWT Food Science and Technology, vol. 141, pp. 110935, 2021. doi: 10.1016/j.lwt.2021.110935
[75] W. H. Pérez Mora and J. Mojica Gómez, “Effect of extraction conditions on obtaining pectin from agroindustrial coffee by-products,” Scientia et Technica, vol. 28, no. 03, pp. 150–156, Sep. 2023, doi: 10.22517/23447214.25163.
[76] Y. Mao, S. R. Dewi, S. E. Harding, and E. Binner, “Influence of ripening stage on the microwave-assisted pectin extraction from banana peels: A feasibility study targeting both the Homogalacturonan and Rhamnogalacturonan-I region,” Food Chem, vol. 460, Dec. 2024, doi: 10.1016/j.foodchem.2024.140549.
[77] T. Moia, T. C. Pimentel, C. E. Barao, A. C. Feihrmann, R. Favareto, A. V. Reise, L. Cardozo-Filho, “Bioactive Compounds and Pectin from Residues of the Passion Fruit Processing: Extraction using Green Technology and Characterization,” Chemical Engineering Transactions, vol. 75, pp. 157- 162, 2019.
[78] A.M. Encalada, C. D. Perez, M. K. Flores, L. Rossetti, E. N. Fissore, A. M. Rojas, “Antioxidant pectin enriched fractions obtained from discarded carrots (Daucus carota L.) by ultrasound-enzyme assisted extraction,” Food Chemistry, vol. 289, pp. 453-460, 2019. doi: 10.1016/j.foodchem.2019.03.07
[79] F. Gutöhrlein, S. Drusch, S. Schalow, “Extraction of low methoxylated pectin from pea hulls via RSM,” Food Hydrocolloids, vol. 102, 2020. doi: 10.1016/j.foodhyd.2019.105609
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Entre Ciencia e Ingeniería

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.