Study of the Ewma Chart in the presence of autocorrelated data

Authors

  • Joaquín González Borja
  • Javier Páez Páez

DOI:

https://doi.org/10.31908/19098367.798

Keywords:

Control charts, exponentially weightedmoving average, autocorrelated data, autoregressive-moving average model.

Abstract

Control charts are traditionally applied to industrial processes, assuming that theobservationssequence does not have any autocorrelation, butthis assumption is frequently violated in practice. The presence of autocorrelation has a serious impact on the performance of control charts, causing a dramatic increase in the frequency of false alarms. This paper presents the construction and implementation form of the chart of exponentially weighted moving average EWMA, in presence of autocorrelated data proposed by Montgomery, D.C. y Mastrangelo, C.M. (1991), through a programmingroutine and its application to a model of autoregressive-moving average model ARMA(p, q), obtained by simulation.

Downloads

Download data is not yet available.

Author Biographies

  • Joaquín González Borja

    Maestría en Ciencias Estadísticas Profesional en Matemáticas con énfasis en Estadística Docente Universidad Católica Popular del Risaralda

  • Javier Páez Páez

    Profesional en Matemáticas con énfasis en Estadística Docente Universidad del Tolima

References

Box, G.E.P. y Jenkins, G.M. (1976). Time Series Analysis, Forecasting, and Control. Holden Day, Oakland, CA.

Brockwell, P.J. y Davis, R.A. (1996). Introduction to Time Series and Forecasting. Springer-Verlag, New York.

Hunter, J.S. (1986). The Exponentially Weighted Moving Average. Journal of Quality Technology 18, pp. 203-209.

Montgomery, D.C. (1991). Introduction to Statistical Quality Control. 2 nd ed., John Wiley Sons, New York, NY.

Montgomery, D.C. y Mastrangelo, C.M. (1991). Some Statistical Process Control Methods for Auto correlated Data. Journal of Quality Technology 23, Nº 3. pp 179-204.

Roberts, S.W. (1959). Control Chart Test Based on Geometric Moving Averages. Technometrics 1, pp. 239-251.

The R Development Core Team, (2005). R: A Language and Environment for Statistical Computing, version 2.2.0. R Foundation for Statistical Computing

Downloads

Published

2008-06-28

Issue

Section

Artículos

How to Cite

[1]
J. González Borja and J. Páez Páez, “Study of the Ewma Chart in the presence of autocorrelated data”, Entre cienc. ing., no. 3, pp. 11–25, Jun. 2008, doi: 10.31908/19098367.798.

Similar Articles

1-10 of 396

You may also start an advanced similarity search for this article.