Simulation of a process of pulverized coal injection with technical improvements, “Ladrillera La Sultana” case study
DOI:
https://doi.org/10.31908/19098367.590Keywords:
SA S88, modeling, coal injection system, fuel, fluidized, process simulation.Abstract
This paper presents the simulation of a fluidized coal injection process, with and without technical improvements using simulator industrial processes, Ladrillera La Sultana case study, Villa Rica (Cauca). Information of the injection process and furnace tunnel of the plant is collected, classified and organized; the injection process is modeled (physical, process and procedural control and P&ID diagram) using ISA S88 and ISA S5. Eight (8) modules equipment and a furnace module are designed for the process simulator. Two simulations were performed with and without technical improvements incorporated. Temperature curves of furnace were obtained, the standard deviation was +- 5°C lower in the curves with technical improvements incorporated; the correlation coefficient with the ambient temperature was 0.3 units below with the technical improvement. The implementation of technical improvement means a monthly savings of US $ 171.52.
Downloads
References
L. García, “Tecnología de fabricación de arrabio con la inyección de combustibles y otros materiales por toberas en el horno alto,” Rev. Met., vol. 34, no. 1, pp. 51–59, 2000.
R. M. Juan C., Edgar F., Lourdes S., Ivan T., Alfredo N., Enrique Q., Juan M., Yuri L., “ahorro de energía en la industria cerámica.” Colciencias, Bogotá-Colombia, pp. 6–10, 2006.
and S. F. S. Yaroshevskii, L. G. A. Formóse, A. Isidro, “Mejoras tecnológicas en el proceso de inyección de carbón pulverizado en el horno alto,” Rev. Met., vol. 32, no. 2, pp. 103–116, 2000.
J. B. Pessoa-filho, “Thermal Radiation in Combustion Systems,” J. Brazilian Soc. Mech. Sci. Eng., vol. 21, no. 3, pp. 537–547, 2000.
E. Mart, M. Meis, D. Rivas, and F. Varas, “Bases de datos de simulación numérica para la predicción del calentamiento de piezas en hornos.” in XXI Congreso de Ecuaciones Diferenciales y Aplicaciones, 2009, pp. 1–9, 2009.
J. B. Takeuchi, “Diseño y construcción de un horno de cerámica.” Universidad Carlos III de Madrid, pp. 1–40, 2009.
J. C. J. Oliver , S. Oller, “A plasticity model for simulation of industrial powder compaction processes,” Int. J. Solids Struct., vol. 3, no. 20–22, pp. 3161–3178, 2003.
G. C. Giovanni T., L. Orazi , A. Fortunato, “Laser Ablation of Metals: A 3D Process Simulation for Industrial Applications,” J. Manuf. Sci. Eng., vol. 130, no. 3, pp. 1–11, 2008.
K. A. M. Hutchingsa, “Analysis and laboratory simulation of an industrial polishing process for porcelain ceramic tiles,” J. Eur. Ceram. Soc., vol. 13, no. 3151, p. 3156, 25AD.
J. B. Tanguy F., Marie-Françoise R., “No TitleSimulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production,” Appl. Catal. B Environ., vol. 67, no. 1–2, pp. 136–148, 2006.
H. S. Weifeng H., “Modeling, Simulation and Optimization of a Whole Industrial Catalytic Naphtha Reforming Process on Aspen Plus Platform1,” Chinese J. Chem. Eng., vol. 14, no. 5, pp. 584–591, 2008.
Q. Y. Zhenjiang Y., Yun C., Dachun F., “Process Development, Simulation, and Industrial Implementation of a New Coal-Gasification Wastewater Treatment Installation for Phenol and Ammonia Removal,” Sch. Chem. Eng., vol. 46, no. 6, pp. 2874–2871, 2011.
J. T. Walters J., Wei-Tsu W., Anand A. , Guoji L. , David L., “No TitleRecent development of process simulation for industrial applications,” J. Mater. Process. Technol., vol. 98, no. 2, pp. 205–211, 2003.
A. P. Dadam, “Numerical and Experimental Thermal Analysis of a Tunnel Kiln used in Ceramic Production,” Rev. la Soc. Bras. Ciencias Mecánicas e Ing, vol. 4, pp. 297–304, 2009.
A. M. R. Alves, Julio E., “Distributed continuous process simulation: An industrial case study,” Comput. Chem. Eng., vol. 32, no. 6, pp. 1195–1205, 2008.
R. Avecillas, “Proyecto de diseño de un horno túnel para planta procesadora de arcilla BELLA AZHUQUITA,” Politécnica Salesiana, 2009.
J. A. Shan-Wen D., Wei-Hsin C., “Pulverized coal burnout in blast furnace simulated by a drop tube furnace,” Energy, vol. 35, no. 2, pp. 576–581, 2010.
W.-H. C. Shan-Wen D., “Numerical prediction and practical improvement of pulverized coal combustion in blast furnace,” Int. Commun. Heat Mass Transf., vol. 33, no. 3, pp. 327–334, 2007.
Y. J.-I. Adilson J., Nogami Hi., “Numerical investigation of simultaneous injection of pulverized coal and natural gas with oxygen enrichment to the blast furnace,” Iron Steel Inst. Japan, vol. 42, no. 11, pp. 1203–12011, 2003.
Z. Guti, “Modelamiento y simulación de un horno túnel industrial,” Departamento de Química, Universidad Nacional de Colombia- sede Medellín, 2010.
Villanueva j., “la simulación de procesos, clave en la toma de decisiones,” Rev. DYNA, vol. 83, pp. 221–227, 2008.
J. Banks., “methodology,” in handbook of simulation, 1st ed., J. Banks, Ed. Atlanta, 2001, pp. 55–335.
F. B. M. Rebolledo1, “uso de inteligencia artificial para la optimización de un modelo de simulación aplicado a un proceso de remanufactura de pino radiata.,” Maderas. Cienc. y Tecnol., vol. 3, no. 2–1, pp. 52– 62, 2001.
N. M. de L. Y. Rodríguez, “Metodología para la simulación hidrológica de eventos extremos máximos en ausencia de datos hidrométricos a escala horaria,” Rev. Ciencias Técnicas Agropecu., vol. 19, no. 4, pp. 119–127, 2010.
Isasmendi G., “Modelado y simulación de hormigón proyectado Para su uso en aplicaciones de entrenamiento en tiempo real,” Universidad de Navarra, 2012.
ISA, ISA. ANSI/ISA-S88.01-1995, 2006.
M. M. J. Cerón, “Propuesta de un Sistema de Monitoreo del Proceso de Inyección de Carbón Pulverizado de la Ladrillera ‘La Sultana – Bloques Ladrillos y Acabados Cerámicos S.A.,’” Universidad del Cauca, 2013.
H. Dorado, “Simulación de un Proceso de Inyección de Carbón Pulverizado, Caso de Estudio Ladrillera la Sultana,” Universidad del Cauca, 2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Entre ciencia e ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










