Spectrum Sensing with Matrix Completion IZMA-SD for Cognitive Radio Networks

Authors

DOI:

https://doi.org/10.31908/19098367.1165

Keywords:

Cognitive radio, Interest zone matrix approximation, matrix completion, nuclear norm, spectrum sensing, singular value decomposition, Standard deviation, sub-Nyquist

Abstract

Debido al crecimiento de las redes inalámbricas, se hace necesario un uso eficiente del espectro, una solución es Radio Cognitivo. En una de las etapas de esta tecnología se realiza el sensado de espectro, es decir determinar en una frecuencia si existen usuarios primarios y en caso de no existir, ocupar el espectro disponible; esto se logra al aplicar técnicas de sensado, cada técnica requiere de recursos hardware y puede identificar diferentes características de una señal. Hoy en día se utilizan altas frecuencias de propagación, es necesario que la etapa de procesamiento realice un muestreo Sub Nyquist, es decir a menos del doble de la máxima frecuencia, una alternativa de solución es utilizar un algoritmo basado en Matrix Completion, denominado por los autores como IZMA-SD. Los resultados muestran que en diferentes señales muestreadas al %75 de Nyquist y bajo diferentes SNR, al aplicar el algoritmo se realiza la reconstrucción de la señal, a la cual se puede aplicar las técnicas de sensado.

Downloads

Download data is not yet available.

Author Biographies

  • Olger Ferledy Erazo De La Cruz, Universidad del cauca

    Ingeniero de sistemas de la Universidad Mariana, Pasto, Colombia (1999). Especialista en redes y servicios telemáticos, Universidad del Cauca, Popayán, Colombia (2001). Especialista en administración de la informática educativa, Universidad de Santander, Bucaramanga, Colombia (2013). Estudiante de maestría en electrónica y telecomunicaciones, Universidad del Cauca, Popayán, Colombia. Sus líneas de interés son: la telemetría y energías renovables. Actualmente es profesor en la Facultad de ingeniería de la Universidad CESMAG, Pasto, Colombia. Miembro del grupo de investigación RAMPA de la Universidad CESMAG.

  • Víctor Fabián Miramá Pérez, Universidad del cauca

    Ingeniero en electrónica y telecomunicaciones, Universidad del Cauca, Popayán, Colombia (2008). Magister en electrónica y telecomunicaciones, Universidad del Cauca, Popayán, Colombia (2013). Sus líneas de interés son: gestión del recurso radio, teoría de juegos y redes de próxima generación. Actualmente es profesor en la Facultad de ingeniería de la universidad del Cauca, Popayán, Colombia. Miembro del Grupo de I+D Nuevas Tecnologías en Telecomunicaciones GNTT y grupo de radio e inalámbricas GRIAL de la Universidad del Cauca.

  • Jorge Edison Mora Arroyo, Universidad del cauca

    Ingeniero electrónico de la Universidad de Nariño, Pasto, Colombia (2009). Ingeniero de telecomunicaciones, Universidad Nacional Abierta y a Distancia, Colombia (2018). Estudiante de maestría en electrónica y telecomunicaciones, Universidad del Cauca, Popayán, Colombia. Sus líneas de interés son: redes inalámbricas avanzadas, inteligencia artificial, teoría de juegos y redes heterogéneas. Actualmente trabaja en el Servicio Geológico Colombiano, Pasto.

References

Cisco. “White Paper: Cisco Visual Networking index: Forecast and Methodology, 2015-2010”. Disponible en: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf. San José, California, USA, 06/07/2016.

Locke, G., and Strickling, L. E. “Plan and timetable to make available 500 Megahertz of spectrum for wireless broadband.” US Department of Commerce, Washington, DC, USA (2010).

FCC Spectrum Policy Task Force (SPTF), “Report of the Spectrum Efficiency Working Group”, United States, November 2002.

Shared Spectrum Company, “General Survey of Radio Frequency Bands – 30 MHz to 3 GHz”, Vienna, Virginia, United States, September 2010.

Rory, V. “A Framework for Radio Frequency Spectrum Measurement and Analysis”, Technical Report, the University of Kansas, United States, March 2008.

Mitola, J., Maguire, G. Q. “Cognitive Radio making software radios more personal”, IEEE Personal Communicant, Vol 6, No. 4, pag. 13-18, September 1999.

Mitola, J. “Cognitive Radio an Integrated Agent Architecture for Software Defined Radio”, Dissertation Doctor Technology, Royal Institute of Technology (KTH), Sweden, ISSN 1403-5286, May 2000.

Haykin, S. “Cognitive Radio: Brain-Empowered Wireless Communications”, IEEE Journal On Selected Areas In Communications, Vol. 23, No. 2, February 2005.

Aguila, J. H. “Radio Cognitiva- Estado del arte”, Universidad Icesi, Revista Sistemas y telemática, vol. 9, No.16, 2011.

NTIA, “United States Frequency Allocation Chart”, [online] https://www.ntia.doc.gov/files/ntia/publications/spectrum_wall_chart_aug2011.pdf.

Pawełczak, P. “Cognitive Radio: Ten Years of Experimentation and Development,” IEEE Communications Magazine, vol. 49, no. 3, pag. 90-100, Mar. 2011.

Peha, J. "Sharing Spectrum Through Spectrum Policy Reform and Cognitive Radio," Proceedings of the IEEE, vol. 97, pag. 708-719, April 2009.

Subhedar, M., y Birajdar G.” Spectrum Sensing Techniques In Cognitive Radio Networks: A Survey”, International Journal of Next Generation Networks, vol. 3, No. 2, June 2011.

Christopher, J., Krishnan, V., y Bagubali, A. “Cognitive Radio: Spectrum Sensing Problems in Signal Processing”, International Journal of computer applications, vol. 40, No. 16, February 2012.

Rozeha, A., and Norsheila, F.”Issues Of Spectrum Sensing In Cognitive Radio Based Systems”, Available: http://trg.fke.utm.my/members/rozeha/2_09.pdf Telematic and Optic Department, Faculty of Electrical Engineering, University Technology Malaysia.2010.

Tevfik, Y., and Huseyin, A. “A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications”, IEEE Communications Surveys & Tutorials, Vol. 11, No. 1, Pag. 116-130, First Quarter 2009.

Hongjian, S., et al. "Wideband spectrum sensing for cognitive radio networks: a survey." IEEE Wireless Communications 20.2 (2013): 74-81.

Zhi, Q., et al. "Optimal multiband joint detection for spectrum sensing in cognitive radio networks." IEEE Transactions on Signal Processing 57.3 (2009): 1128-1140.

Hong, H., et al. "Applications of compressed sensing in communications networks." arXiv preprint arXiv:1305.3002 (2013).

Candes, E. J., and Recht B. "Exact Matrix completion via convex optimization. Foundations of Computational mathematics, 9(6), 717.

Shabat, G., & Averbuch, A. Interest zone matrix approximation. Electronic Journal of Linear Algebra, 23(1), 50 (2012).

Waleed, E.” Spectrum Sensing in Cognitive Radio Networks”. Tesis de maestría, faculty of Computer Engineering Department College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Pakistan, 2008.

Published

2019-12-30

Issue

Section

Artículos

How to Cite

Spectrum Sensing with Matrix Completion IZMA-SD for Cognitive Radio Networks. (2019). Entre Ciencia E ingeniería, 13(26), 74-84. https://doi.org/10.31908/19098367.1165