Extracción de compuestos fenólicos y contenido de catequina en cortezas de tres especies forestales del Cauca-Colombia

Palabras clave: Biomasa, HPLC, SPE, polifenoles, taninos condensados

Resumen

Se evaluó el contenido de catequina en cortezas de las especies forestales Pinus patula, Pinus oocarpa y Eucaliptus grandis, cultivadas en el Departamento del Cauca-Colombia. Los extractos etanólicos se obtuvieron evaluando las mejores condiciones de tamaño de partícula, tiempo de agitación, relación disolvente-corteza, temperatura y agitación. El contenido de catequina se determinó usando cromatografía líquida de alta resolución (HPLC) con detector ultravioleta y empleando extracción en fase sólida (SPE) para la limpieza de las muestras. Se encontró un contenido de catequina de 2.00±0.03%, 2.96±0.02% y 0.18±0.03% en cortezas de P. patula, P. oocarpa y E. grandis respectivamente. Este contenido de catequina indica el gran potencial en aplicaciones industriales y medicinales para un recurso renovable como la corteza, abundante en la región y cuya disposición en campo afecta ambientalmente las zonas forestales.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Rodrigo Andrés Sarria Villa, Universidad del Cauca

Rodrigo Andrés Sarria Villa. Investigador del Grupo de Investigación en Química Analítica Ambiental de la Universidad del Cauca y Profesor Ocasional tiempo completo del Departamento de Química de la Universidad del Cauca, Popayán, Colombia. Químico de la Universidad del Cauca, Popayán, Colombia. Maestría en Ciencias Químicas de la Universidad del Valle, Cali, Colombia y Doctor en Ciencias Químicas de la Universidad del Valle, Cali, Colombia, cuenta con 3 años de experiencia como docente, 10 años de experiencia como investigador y es miembro de la sociedad ambiental SETAC. Sus áreas de interés son: Química ambiental, toxicología y recursos renovables.

José Antonio Gallo Corredor, Universidad del Cauca

José Antonio Gallo Corredor. Investigador y Coordinador del Grupo de Investigación en Química Analítica Ambiental de la Universidad del Cauca, Popayán, Colombia. Licenciado en Ciencias de la Educación Química y Biología de la Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia. Maestría en Ciencias Químicas de la Universidad del Valle, Cali, Colombia y Candidato a doctor en Ciencias de la Universidad del Cauca, Popayán, Colombia y cuenta con 20 años de experiencia como docente e investigador. Sus áreas de interés son: Contaminación por actividad minera y aplicaciones en residuos agroforestales.

Ricardo Benítez Benítez

Ricardo Benítez Benítez. Investigador del Grupo de Investigación en Química de Productos Naturales de la Universidad del Cauca, Profesor Titular del departamento de Química de la Universidad del Cauca, Popayán, Colombia. Licenciado en Bioquímica por la Universidad del Valle, Cali, Colombia. Maestría en Ciencias Químicas de la Universidad del Valle, Cali, Colombia y Doctor en Ciencia y Tecnología de Alimentos de la Universidad de Lleida, Lleida, España y cuenta con más de 30 años de experiencia industrial, docente y de investigación. Sus áreas de interés son: Bioquímica, actividad enzimática y recursos renovables.

Citas

[1] H. Kofujita, K. Ettyu y M. Ota, “Characterization of the major components in bark from five Japanese tree species for chemical utilization”, Wod science and Technology., vol. 33, pp. 223-228, 1999.
[2] C.S. Tavares et al., “Bioproducts from forest biomass: Essential oils and hydrolates from wastes of Cupressus lusitanica Mill. and Cistus ladanifer L”, Industrial Crops and Products., vol. 144, 112034, 2020.
[3] D. Fengel, and G. Wegener, “Wood, chemistry, ultrastructure, reactions”. Walter de Gruyter Ed. Nueva York, pp. 90-115, 1989.
[4] I. Mármol et al., “A systematic review of the potential uses of pine bark in food industry and health care”, Trends in Food Science & Technology., vol. 88, pp. 558-566, 2019.
[5] P.M. Dey and J.B. Harborne, “Methods in plant biochemistry. Plant phenolics”. Academic Press., vol.1, 552 p, 1989.
[6] P.S. Chiang et al., “Extracting antioxidant phenolic compounds from compressional-puffing pretreated Pinus morrisonicola: Effects of operational parameters, kinetics and characterization”, Journal of the Taiwan Institute of Chemical Engineers., vol. 75, pp. 70-76, 2017.
[7] Z. Peng et al., “Quantitative Analysis of Polymeric Procyanidins (Tannins) from Grape (Vitis vinifera) Seeds by Reverse Phase High-Performance Liquid Chromatography”, J. Agric. Food Chem., vol. 49, pp. 26-31, 2001.
[8] N.A. Rosdiana at al., “Characterization of bark extractives of different industrial Indonesian wood species for potential valorization”, Industrial Crops and Products, vol. 108, pp. 121-127, 2017.

[9] G.J. Garro, B. Riedl and A. Conner, “Analytical studies on tara tannins”. Holzforschung., vol. 51(3), pp. 235-243, 1997.
[10] C.R. China et al., “Suitability of selected vegetable tannins traditionally used in leather making in Tanzania”, Journal of Cleaner Production., vol. 251, 119687, 2020.
[11] G.J Soleas, E.P. Diamaudis and D.M. Goldberg, D.M. “Resveratrol: a molecule whose time has come and gone?”, J Clin Lab Anal., vol. 11, pp. 287-313, 1997.
[12] M.B. Ucar, G. Ucar, A. Pizzi, O. Gonultasa, “Characterization of Pinus brutia bark tannin by MALDI-TOF MS and 13C NMR”., Industrial Crops and Products., vol. 49, pp. 697–704, 2013.
[13] C.S. Ku, and S.P. Mun, “Characterization of proanthocyanidin in hot water extract isolated from Pinus radiata bark”, Wood Sci. Technol, vol. 41, pp. 235–247, 2007.
[14] M. Jerez, M. Pinelo, J. Sineiro, M.J. Núñez, M.J. “Influence of extraction conditions on phenolic yields from pine bark: assessment of procyanidins polymerization degree by thiolysis”, Food Chemistry., vol. 94, 406–414, 2006.
[15] H. Weber et al., “Comparison of proanthocyanidins in comercial antioxidants: grape seed and pine bark extracts”, J. Agric. Food Chem., vol. 55, pp. 148–156, 2007.
[16] P. Navarrete et al., “MALDI-TOF and 13C NMR characterization of maritime pine industrial tannin extract”, Ind. Crops Prod, vol. 32, pp. 105–110, 2010.
[17] Y.B. Hoong et al., “Characterization of Acacia mangium polyflavonoid tannins by MALDI-TOF mass spectrometry and CP-MAS 13C NMR”, Eur. Polym. J., vol. 46, pp. 1268–1277, 2010.
[18] Y. Wei et al., 2011. “Qualitative and Quantitative Evaluation of Phenolic Compounds in Iris dichotoma Pall, Phytochemical Analysis., vil. 23(3), pp. 197-207, 2012.
[19] S. Bianchi et al., “Characterization of condensed tannins and carbohydrates in hot water bark extracts of European softwood species”, Phytochemistry., vol. 120, pp. 53-61, 2015.
[20] Y. Sattler, C. Grone, A. Zurk, “New compounds of the manumycin group of antibiotics and a fracilitated rouce for their structure elucidation”, Org. Chem., vol. 58, 6583, 1993.
[21] P.C. Hollman, M.G. Hertog, M.B. Katan, “Analysis and health effects of flavonoids”, Food Chem., vol. 57, pp. 43-6, 1996.
[22] K.A. Cooper, M. Chopra, D.I. Thurnham, “Wine polyphenols and promotion of cardiac health”, Nutrition Research Rewiews., vol. 17, pp. 111–129, 2004.
[23] Y-Y. Li, et al., “Effects of Pinus massoniana bark extract on the invasion capability of HeLa cells”, Journal of Functional Foods., vol. 24, pp. 520 – 526, 2016.
[24] Sotará-Cauca.En: https://es.wikipedia.org/wiki/Sotar%C3%A1_(Cauca). Consultada: 01/10/2019.
[25] Anual Book of ASTM standars. Vol. 04.09 Feb.1985.
[26] I. Spranger, et al., “Separation of grape and wine proanthocyanidins according to their degree of polymerization”, J. Agric. Food Chem., vol. 46, pp. 1390-1396, 1998.
[27] L. Chupin et al., “Characterisation of maritime pine (Pinus pinaster) bark tannins extracted under different conditions by spectroscopic methods, FTIR and HPLC”, Ind. Crops Prod., vol. 49, pp. 897–903, 2013.
[28] R. Govindarajan, D.P. Singh, A.K.S. Rawat, “High perfomance liquid chromatography method for quantification of phenolics in Chyavanprash a potent Ayurvedic drug”, Journal of Pharmaceutical and Biomedical Analysis., vol. 43, pp. 527-532, 2007.
[29] T.G. Gini, and G.J. Jothi, “Column chromatography and HPLC analysis of phenolic compounds in the fractions of Salvinia molesta Mitchell”, Egyptian Journal of Basic and Applied Sciences, vol. 5(3), pp. 197-203, 2018.
[30] G. Ganjeguntea et al., “Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris”, Forest Ecology and Management., vol. 187, pp. 197–211, 2004.
[31] L.K. Ernst, “Productos forrajeros a partir de los residuos del bosque”. Edit. Lesnaya Prom. Moscú, 166 p, 1982.
[32] F. Herráez, F y J. Gutiérrez, “Caracterización de la corteza de Pinus pinaster Ait. Generada en ls aserraderos de la provincia de Ávila para su uso energético como biomasa”. Universidad Católica de Ávila, 2012. Consultada: 12/01/2020. Disponible en: https://www.interempresas.net/Madera/Articulos/103297-Caracterizacion-corteza-Pinus-pinaster-Ait-generada-aserraderos-provincia-Avila-uso.html.
[33] D. Hon and N. Shiraishi, “Wood and cellulosic chemistry”. Second edition. Marcel Dekker, Inc. New York. 914p, 2000.
[34] M. Castro Y R. Gonzáles, “Comparación del contenido de compuestos fenólicos en la corteza de ocho especies de pino”, Madera y Bosques, vol. 9(2), pp. 41-49, 2003.
[35] M. Jerez et al., “Influence of extraction conditions on phenolic yields from pine bark: assessment of procyanidins polymerization degree by thiolysis”, Food Chemistry., vol. 94, pp. 406–414, 2006.
[36] F. Martínez, “Obtención de taninos a partir de corteza de dos especies de pinos cubanos”, Revista Forestal Baracoa., 3, (1), pp. 51, 1983.
[37] E. Aspé and K. Fernández, “The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark”, Industrial Crops and Products., vol. 34(1), pp. 838-844, 2011.
[38] W.S.G.R. Dvorak et al., “Pinus tecunumanii. In: Conservation and Testing of Tropical and Subtropical Forest Species by the CAMCORE Cooperative”. College of Natural Resources, NCSU. Raleigh, NC. USA. pp: 188-209, 2000.
[39] M. Mülek and P. Högger, “Highly sensitive analysis of polyphenols and their metabolites in human blood cells using dispersive SPE extraction and LC-MS/MS”, Anal Bioanal Chem., vol. 407, pp. 1885–1899, 2015.
[40] S. Hashim et al., “Rapid solid-phase extraction and analysis of resveratrol and other polyphenols in red wine”, Journal of Chromatography A., vol. 1313, 25, pp. 284-290, 2013.
[41] J. Hellström, and P. Mattila, “HPLC Determination of Extractable and Unextractable Proanthocyanidins in Plant Materials”, J. Agric. Food Chem., vol. 561, pp. 77617-7624, 2008.
[42] A. Romani et al.,” Analysis of condensed and hydrolysable tannins from commercial plant extracts”, Journal of Pharmaceutical and Biomedical Analysis., vol. 41, 2, pp. 415-420, 2006.
[43] G.E. Rohr, “Analytical investigation and isolation of procyanidins from Crataegus leaves and flowers”. Tesis Doctoral. Swiss Federal Institute of Technology. Zurich, 1999.
[44] O. Yesil-Celiktas et al., “Determination of polyphenolic constituents and biological activities of bark extracts from different Pinus species”, J. Sci. Food Agric., vol. 89, pp. 1339–1345, 2009.
[45] M. Jerez et al., “Procyanidins from pine bark: Relationships between structure, composition and antiradical activity”., Food Chemistry, vol. 104, (2), pp. 518-527, 2007b.
[46] K.J. Cho et al., “Inhibition mechanisms of bioflavonoids extracted from the bark of Pinus maritime on the expression of proinflammatory cytokines”. Ann N Y Acad Sci. vol. 928, pp. 141-156, 2001.
[47] R.A. Sarria-Villa et al., “Extraction of peholic compounds from Pinus patula bark using etanol-water mixtures and the anti-inflammatory action of the ethanolic extract”., International Journal of Current Research, vol. 10 (3), pp. 66886-66895.
Publicado
2021-07-01
Cómo citar
Sarria Villa, R., Gallo Corredor, J., & Benítez, R. (2021). Extracción de compuestos fenólicos y contenido de catequina en cortezas de tres especies forestales del Cauca-Colombia. Entre Ciencia E Ingeniería, 15(29), 19-27. https://doi.org/10.31908/19098367.2622
Sección
Artículos