Velocity and acceleration kinematics of the Mitsubishi Movemaster RV-M1 serial robot
DOI:
https://doi.org/10.31908/19098367.3552Keywords:
Robotics, velocity kinematics, acceleration kinematics, velocity DAQ, Mitsubishi RV-M1Abstract
The explicit formulation of the velocity and acceleration kinematics for the Movemaster RV-M1 robot is presented. The formulae are obtained from the tool position transformation matrix. The derived formulation allowed creating a Matlab graphical user interface for simulation of kinematic tasks and calculation of velocity and acceleration, for both tool and robot joints. A vertical linear weld type kinematic task was simulated and later carried out in the actual robot using programming commands and hardware provided by the manufacturer. An angular velocity DAQ was built to measure the velocities of the joints in the fi xed coordinate system, and used in the experimental stage. From the results, a satisfactory validation of the mathematical formulae was made. The derived formulation for this robot was available had not been presented before.
Downloads
References
R. Jazar, Theory of Applied Robots, New York: Springer, 2007.
M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics and Control, 2da. ed., New York: Wiley, 2005.
I. Olier, O. Avilés, and J. Hernándes, “Una introdución a la robótica industrial,” Revista Fac. Ing. Mec., UMNG, vol. 8, pp. 53–67, 1999.
L. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, Canada: Wiley, 1999.
E. Barrios, F. Bernal, y C. Tejada, “Diseño de sistemas electrónicos para manejo de señales digitales para control de articulaciones del robot Movemaster RV M1 de Mitsubishi,” Pregrado, Ing. Mecatrónica, U. de San Buenaventura, Bogotá, 2011.
R. Mihali and T. Sobh, “Effective simulation and control approaches for alleviating the access to high-cost manipulator,” J. of STEM Education: Innovation and Research, vol. 6, pp. 21–28, 2005.
K. Goyal and D. Sethi, “An analytical method to find the workspace of a robot manipulator,” J. of Mech. Eng., vol. 41, no. 1, pp. 25–30, 2010.
C. Hamilton, “Using MATLAB to advance the robotics laboratory,” J. of Comp. Applications in Eng. Ed., vol. 15, no. 3, pp. 205–213, 2007.
R. Kumar, P. Kalra, and N. Prakash, “A virtual RV-M1 robot system,” Elsevier, vol. 27, pp. 994–1000, 2011.
J. Roldán, et al, “Cinemática inversa matricial del manipulador 5R Mitsubishi RV-M1,” Revista Épsilon, no. 19, pp. 33–56, 2012.
M. Cardona, et al, “Diseño, construcción e implementación de una plataforma robótica multifuncional con propósitos educativos-Majad 1.0,” Revista Entre Ciencia e Ingeniería, vol. 8, no. 16, pp. 9-15, Jul-Dic 2014.
C. Crane and J. Duffy, Kinematic Analysis of Robot Manipulators, New York: Cambridge University Press, 2008.
S. Dutré, H. Bruyninckx, and J. Schutter, “The analytical Jacobian and its derivate for a parallel manipulator,” IEEE Int. Conf. on Robotics and Automation, pp. 2961–2966, 1997.
S. Buss, “Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methods,” San Diego: Department of Mathematics, University of California, pp. 1–19, 2009.
S. Koh, “A Jacobian-based algorithm for planning the motion of an underactuated rigid body undergoing forward and reverse rotations,” Robotica, vol. 28, pp. 747–757, 2009.
F. Park and J. Kim, “Manipulability of closed kinematic chains,” Journal of Mechanical Engineers, vol. 121, no. 1, pp. 32–38, 1999.
Mitsubishi Electric Corporation, Industrial Micro-robot System Model RV-M1 Technical Manual. Naguya, JPN: Mitsubishi, 1989.
L. D. Martínez, L. Martínez, J. Roldán, “Basic DAQ for validating velocity kinematics of the Mitsubishi Movemaster RV-M1 robot,” IEEE Latin Am. Trans. Unpublished.
F. Reyes, Matlab Aplicado a Robótica y Mecatrónica, México: Alfaomega, 2012.
M. Gil, Introducción Rápida a Matlab y Simulink para Ciencia e Ingeniería, Madrid: Días de Santos, 2003.
J. Rúa y A. Barraza, “Modelado dinámico realista del manipulador Mitsubishi Movemaster RV-M1,” Pregrado, Ing. Mecánica, U. del Atlántico, Barranquilla, 2013.
J. Roldán, L. D. Martínez, y L. Martínez, “Software AMDC RV-M1,” Certificado de Registro de Soporte Logico 13-56-87, Octubre 25, 2016.
Stmicroelectronics, “MEMS motion sensor: three-axis digital output gyroscope L3GD20,” Agosto 2011. [Online]. Available: http://www.tiendaderobotica.com/downsload/L3GD20.pdf
Sparkfun Electronics, “Bluetooth BlueSMIRF Gold,” [Online]. Available: http://tienda.tdrobotica.co/producto/105
Next Prototypes, “BlueTooth Serial Controller 2.2.1,” [Online]. Available: http://play.google.com/store/apps/details?id=nextprototypes.BTSerialController&hl=en
R. Figliola and D. Beasley, Theory and Design for Mechanical Measurements, 5th. ed., Michigan: Wiley, 2011.