Materiales termoeléctricos, importantes en la cosecha de energía

  • Diego Fernando Arias Mateus Universidad Católica de Pereira

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Diego Fernando Arias Mateus, Universidad Católica de Pereira

Profesor del departamento de Ciencias Básicas de la Universidad Católica de Pereira. Es Ingeniero Químico, con Maestría en Física y Doctorado en Ingeniería. En los últimos años ha realizado investigaciones en esfuerzos residuales en películas delgadas, en el crecimiento de películas delgadas para aplicaciones piezoeléctricas y termoeléctricas.

Citas

[1] O. H. Ando Junior, A. L. O. Maran, and N. C. Henao, “A review of the development and applications of thermoelectric microgenerators for energy harvesting,” Renew. Sustain. Energy Rev., vol. 91, pp. 376–393, 2018, doi: https://doi.org/10.1016/j.rser.2018.03.052.
[2] P. Gorai, V. Stevanović, and E. S. Toberer, “Computationally guided discovery of thermoelectric materials,” Nat. Rev. Mater., vol. 2, no. 9, p. 17053, 2017, doi: 10.1038/natrevmats.2017.53.
[3] E. Velmre, “Thomas Johann Seebeck (1770-1831).,” Thomas Johann Seebeck (1770-1831)., vol. 13, no. 4, pp. 276–282, Dec. 2007, [Online]. Available: http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=27961660&lang=es&site=ehost-live.
[4] Z.-G. Shen, L.-L. Tian, and X. Liu, “Automotive exhaust thermoelectric generators: Current status, challenges and future prospects,” Energy Convers. Manag., vol. 195, pp. 1138–1173, 2019, doi: https://doi.org/10.1016/j.enconman.2019.05.087.
[5] D. M. Rowe, “Applications of nuclear-powered thermoelectric generators in space,” Appl. Energy, vol. 40, no. 4, pp. 241–271, 1991, doi: https://doi.org/10.1016/0306-2619(91)90020-X.
[6] D. Wang, Y. Liu, J. Jiang, W. Pang, W. M. Lau, and J. Mei, “Potential Application of a Thermoelectric Generator in Passive Cooling System of Nuclear Power Plants,” J. Electron. Mater., vol. 46, no. 5, pp. 3109–3114, 2017, doi: 10.1007/s11664-016-5191-0.
[7] J.-F. Li, W.-S. Liu, L.-D. Zhao, and M. Zhou, “High-performance nanostructured thermoelectric materials,” NPG Asia Mater., vol. 2, no. 4, pp. 152–158, 2010, doi: 10.1038/asiamat.2010.138.
[8] D. Liu, F.-Y. Zhao, H.-X. Yang, and G.-F. Tang, “Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system,” Energy, vol. 83, pp. 29–36, 2015, doi: https://doi.org/10.1016/j.energy.2015.01.098.
[9] K. Cheng et al., “Performance assessment of an integrated power generation and refrigeration system on hypersonic vehicles,” Aerosp. Sci. Technol., vol. 89, pp. 192–203, 2019, doi: https://doi.org/10.1016/j.ast.2019.04.006.
[10] R. A. Kishore, A. Nozariasbmarz, B. Poudel, M. Sanghadasa, and S. Priya, “Ultra-high performance wearable thermoelectric coolers with less materials,” Nat. Commun., vol. 10, no. 1, p. 1765, 2019, doi: 10.1038/s41467-019-09707-8.
Publicado
2021-06-30
Cómo citar
Arias Mateus, D. (2021). Materiales termoeléctricos, importantes en la cosecha de energía. Entre Ciencia E Ingeniería, 15(29), 7-8. Recuperado a partir de https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2662
Sección
Editorial