Characterization of Accurate Soil and Grassland Fertilization Variables for the Design of Intelligent Recommendation Softwareare (Retracted)
DOI:
https://doi.org/10.31908/19098367.2766Keywords:
Accurate Soil Fertilization, Characterization of Variables, Dairy Cattle, Specialized Analysis of Collected Data, Recommendation SoftwareAbstract
This article presents the characterization of variables related to the precise fertilization of soils and dairy cattle pastures, for the construction of an intelligent system for the recommendation of fertilization plans. The characterization was carried out through a field study that considered soil analysis and determination of optimum levels of macronutrients in five farms in the north of Antioquia-Colombia. The main result was the establishment of the input and output fuzzy sets, together with the production rules, which were later taken to a functional prototype. From the above, it is concluded that the use of artificial intelligence techniques has great potential for integration with software to support fertilization-related tasks.
Downloads
References
Torres Rozo, J. S. Protocolo sobre la atención del puerperio en el ganado bovino del complejo agroindustrial de Tizayuca en su estado actual, Hidalgo, México (Doctoral dissertation, Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Bucaramanga). 2020.
Rodas, J. L., Olivares, J., Galindo, J. A., & Benavides, D. Hacia el uso de sistemas de recomendación en sistemas de alta variabilidad. XXI Jornadas de Ingeniería del Software y Bases de Datos, 219, 65. 2020.
De, A., & Singh, S. P. (2021). Analysis of fuzzy applications in the agri-supply chain: A literature review. Journal of Cleaner Production, 283, 124577.
Vakilian, K. A., & Massah, J. (2017). A farmer-assistant robot for nitrogen fertilizing management of greenhouse crops. Computers and electronics in agriculture, 139, 153-163.
Heiß, A., Paraforos, D. S., Sharipov, G. M., & Griepentrog, H. W. (2020). Modelling and Simulation of a Fuzzy System for Site-Specific Nitrogen Fertilization. IFAC-PapersOnLine, 53(2), 15790-15795.
Ashraf, A., Akram, M., & Sarwar, M. (2014). Fuzzy decision support system for fertilizer. Neural Computing and Applications, 25(6), 1495-1505.
Godinho, E. Z., de Lima Caneppele, F., & Gasparotto, H. V. (2022). Use of fuzzy logic to optimize fertilizer application on radish. Trends in Horticulture, 5(2).
Pezol, N. S., Adnan, R., & Tajjudin, M. (2020, June). Design of an internet of things (iot) based smart irrigation and fertilization system using fuzzy logic for chili plant. In 2020 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) (pp. 69-73). IEEE.
Wang, H., Cheng, M., Zhang, S., Fan, J., Feng, H., Zhang, F., ... & Xiang, Y. (2021). Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods. Agricultural Water Management, 256, 107130.
Jaimes Cruz, L. J., & Correa Cardona, H. J. Balance de nitrógeno, fósforo y potasio en vacas Holstein pastando praderas de kikuyo (Cenchrus clandestinus) en el norte de Antioquia. CES Medicina Veterinaria y Zootecnia, 11(2), 18-41. 2016.
Bagnato. Ejercitación en Python, aprendiendo machine learning. 2020. [Online] Available: https://www.aprendemachinelearning.com/sistemas-de-recomendacion/
Calvo Hernández, O.M. Estimación del costo de producción de un kilogramo de leche y sus variables más influyentes, Rev. e-Agronegocios, 7(2), p. 44 – 62. 2021. Doi: https://doi.org/10.18845/ea.v7i2.5682
Echeverri J., Aristizabal M., Moreno F. y Bedoya Alejandra (2012). Diseño de un sistema difuso para valoración de aportes en sistemas colaborativos. Rev. ing. univ. Medellín 11(20).