Tecnología de membranas: desarrollo histórico
Resumen
La Tecnología de Membrana permite separar materiales de distinto peso molecular, lo que hace que su desarrollo haya sido muy importante a través de la historia, reduciendo costos energéticos y preservando los recursos no renovables entre otros factores. Hoy en día tiene múltiples aplicaciones, como es el caso de la obtención de las proteínas del lactosuero, la desalinización del agua de mar, la limpieza de aguas residuales, la obtención de componentes volátiles a partir del café soluble, etc. Esta revisión presenta una descripción del desarrollo de las tecnologías de membranas y sus más importantes aplicaciones.
Descargas
Citas
K. S. Sutherland and G. Chase, Filters and Filtration Handbook. Oxford, UK: Elsevier Science, 2008.
S. K. Sharma, S. J. Mulvaney, and S. S. H. Rizvi, Food process engineering : theory and laboratory experiments. New York, USA: Wiley-Interscience, 2000.
C. J. Geankoplis, Transport processes and separation process principles, 4th ed. Upper Saddle River, NJ, USA: Prentice Hall Professional Technical Reference, 2003.
H. Strathmann, “A Random Walk through Membrane Science—From Water Desalination and Artificial Kidneys to Fuel Cell Separators and Membrane Reactors,” in Advances in membrane science and technology, T. Xu, Ed., ed New York, USA: Nova Biomedical Books, 2009, pp. 1-20.
A. M. Sastre, A. K. Pabby, and S. S. H. Rizvi, “Membrane Applications in Chemical and Pharmaceutical Industries and in Conservation of Natural Resources: Introduction,” in Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, A. K. Pabby, S. S. H. Rizvi, and A. M. Sastre, Eds., ed Boca Raton, FL, USA: CRC Press, Taylor & Francis Group, 2009, pp. 3-6.
H. Muñoz Guerrero, “Gestión medioambiental de salmueras de desalado de bacalao. Tratamiento mediante tecnología de membranas,” Tesis doctoral, Universitat Politècnica de València, València, España, 2010.
T. Uemura and M. Henmi, “Thin-Film Composite Membranes for Reverse Osmosis,” in Advanced membrane technology and applications, N. N. Li, A. G. Fane, W. S. W. Ho, and T. Matsuura, Eds., ed Oxford, UK: Wiley-Blackwell, 2008, pp. 3-20.
N. Hilal, A. F. Ismail, and C. Wright, Membrane fabrication. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group, 2015.
S. Periera-Nunes and K.-V. Peinemann, Membrane technology : in the chemical industry. Weinheim; Cambridge, UK: Wiley-VCH, 2001.
Lucrecio, De rerum natura. De la naturaleza. España: El Acantilado, 2012.
J. Aguilar Peris, “Fenómenos de transporte a través de membranas,” Revista portuguesa de química, vol. 25, pp. 11-26, 1983.
J. J. Gomilla Villalonga, “Tecnología de electromembrana cerámica para la desinfección de aguas,” Tesis doctoral, Universitat Politècnica de Catalunya, Barcelona, España, 2015.
J. A. Nollet, “Recherches sur les causes du Bouillonnement des Liquides,” Histoire de l’Acadmie Royale des Sciences, pp. 57-104, 1752.
A. Sotto Díaz, “Aplicación de la tecnología de membranas de nanofiltración y ósmosis inversa para el tratamiento de disoluciones acuosas de compuestos fenólicos y ácidos carboxílicos,” Doctorado, Departamento de Tecnología Quimica y Ambiental, Universidad Rey Juan Carlos, Madrid, España, 2008.
R. J. H. Dutrochet, “Nouvelles Observations sur l’Endosmose et l’Exosmose, et sur la cause de ce double phénomène,” Annales de Chimie et de Physique, vol. 35, pp. 393–400, 3/31/ 1827.
K. W. Böddeker, “Commentary: Tracing membrane science,” Journal of Membrane Science, vol. 100, pp. 65-68, 3/31/ 1995.
H. S. Muralidhara, “Challenges of Membrane Technology in the XXI Century,” in Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing, Z. F. Cui and H. S. Muralidhara, Eds., ed Oxford, UK: Elsevier Science, 2010, pp. 19-32.
A. Fick, “Ueber Diffusion,” Annalen der Physik, vol. 170, pp. 59-86, 1855.
T. Graham, “Liquid Diffusion Applied to Analysis,” Philosophical Transactions of the Royal Society of London, vol. 151, pp. 183-224, 1861.
M. Traube, “Experimente zur Theorie der Zellenbildung und Endosmose,” Archiv für Anatomie und Physiologie und wissenschaftliche Medizin, pp. 87-165, 1867.
M. Traube, “Über homogene Membranen und deren Einfluss auf die Endosmose,” Centralblatt für die medicinischen Wissenschaften, vol. 4, pp. 97-100, 1866.
M. Traube, “Experimente zur Theorie der Zellenbildung,” Centralblatt für die medicinischen Wissenschaften, vol. 2, pp. 609-615, 1864.
J. v. t. Hoff, “The Function of Osmotic Pressure in the Analogy between Solutions and Gases,” Proceedings of the Physical Society of London, vol. 9, pp. 307-334, 1887.
J. C. Maxwell, “A Treatise on the Kinetic Theory of Gases,” Nature, vol. 16, pp. 242-246, 1877.
H. Bechhold, Kolloidstudien mit der Filtrationsmethode. Leipzig: Engelmann, 1907.
R. Zsigmondy and W. Bachmann, “Über neue Filter,” Zeitschrift für anorganische und allgemeine Chemie, vol. 103, pp. 119-128, 1918.
J. D. Ferry, “Ultrafilter Membranes and Ultrafiltration,” Chemical Reviews, vol. 18, pp. 373-455, 1936/06/01 1936.
W. J. Elford, “Principles governing the preparation of membranes having graded porosities. The properties of “gradocol” membranes as ultrafilters,” Transactions of the Faraday Society, vol. 33, pp. 1094- 1104, 1937.
Y. Cohen and J. Glater, “A tribute to Sidney Loeb —The pioneer of reverse osmosis desalination research,” Desalination and Water Treatment, vol. 15, pp. 222-227, 2012.
T. Barbari, “Basic principles of membrane technology : Marcel Mulder (Ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991; hardbound, Dfl. 200, ISBN 0-7923-0978-2; paperback, Dfl. 70, ISBN 0-7923-0979-0; 400 pp,” Journal of Membrane Science, vol. 72, pp. 304-305, 9/16/ 1992.
M. Mulder, Basic Principles of Membrane Technology, 2nd ed. London, UK, 1996.
M. Gonzales Rivas, “Separación y purificación del ácido lactobiónico,” Master en Biotecnología Alimentaria Master en Biotecnología Alimentaria, Biotenología Alimentaria, Universidad de Oviedo, Oviedo, España, 2013.
J. E. Cadotte, R. J. Petersen, R. E. Larson, and E. E. Erickson, “A new thin-film composite seawater reverse osmosis membrane,” Desalination, vol. 32, pp. 25-31, 1// 1980.
H. Ozaki and H. Li, “Rejection of organic compounds by ultra-low pressure reverse osmosis membrane,” Water Research, vol. 36, pp. 123-130, 1// 2002.
H. K. Lonsdale, “What is membrane? Part II,” Journal of Membrane Science, vol. 43, pp. 1-3, // 1989.
R. Ibañez Lorente, “Estudio de la Ultrafiltación de Proteínas Modelo con Membranas Cerámicas,” Tesis de Doctorado, Universidad de Granada, Granada, España, 2007.
R. W. Baker, Membrane Technology and Applications: John Wiley & Sons, Ltd, 2004.
Z. F. Cui, Y. Jiang, and R. W. Field, “Fundamentals of Pressure-Driven Membrane Separation Processes,” in Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing, Z. F. Cui and H. S. Muralidhara, Eds., ed Oxford, UK: Elsevier Science, 2010, pp. 1-18.
R. Singh, “Chapter 1 - Introduction to membrane technology,” in Hybrid Membrane Systems for Water Purification, R. Singh, Ed., ed Amsterdam: Elsevier Science, 2005, pp. 1-56.
L. Fernández García, S. Álvarez Blanco, and F. A. Riera Rodríguez, “Microfiltration applied to dairy streams: removal of bacteria,” Journal of the Science of Food and Agriculture, vol. 93, pp. 187-196, 2013.
A. Al Ashhab, O. Gillor, and M. Herzberg, “Biofouling of reverseosmosis membranes under different shear rates during tertiary wastewater desalination: Microbial community composition,” Water Research, vol. 67, pp. 86-95, 12/15/ 2014.
L. Sidney and S. Srinivasa, “Sea Water Demineralization by Means of an Osmotic Membrane,” in Saline Water Conversion?II. vol. 38, ed: AMERICAN CHEMICAL SOCIETY, 1963, pp. 117-132.
A. F. de Carvalho and J. L. Maubois, Engineering Aspects of Milk and Dairy Products. Boca Raton, 2010.
B. Van der Bruggen and J. Geens, “Nanofiltration,” in Advanced Membrane Technology and Applications, ed: John Wiley & Sons, Inc., 2008, pp. 271-295.
S. Zhu, S. Zhao, Z. Wang, X. Tian, M. Shi, J. Wang, and S. Wang, “Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate,” Journal of Membrane Science, vol. 493, pp. 263-274, 11/1/ 2015.
A. Chacón-Villalobos, “- Tecnologías de membranas en la agroindustria lácteaJF - Agronomía Mesoamericana,” vol. - 243-263, 2006.
Y.-X. Sun, Y. Gao, H.-Y. Hu, F. Tang, and Z. Yang, “Characterization and biotoxicity assessment of dissolved organic matter in RO concentrate from a municipal wastewater reclamation reverse osmosis system,” Chemosphere, vol. 117, pp. 545-551, 12// 2014.
J. Kujawa, S. Cerneaux, and W. Kujawski, “Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes,” Journal of Membrane Science, vol. 474, pp. 11-19, 1/15/ 2015.
T. A. Davis, “Electrodialysis,” in Handbook of industrial membrane technology, M. C. Porter, Ed., ed Park Ridge, N.J, USA: Noyes Publications, 1990, pp. 482-510.
F. Ahmad, K. K. Lau, S. S. M. Lock, S. Rafiq, A. U. Khan, and M. Lee, “Hollow fiber membrane model for gas separation: Process simulation, experimental validation and module characteristics study,” Journal of Industrial and Engineering Chemistry.
A. K. Fritzsche and J. E. Kurz, “The Separation of Gases by Membranes,” in Handbook of industrial membrane technology, M. C. Porter, Ed., ed Park Ridge, N.J, USA: Noyes Publications, 1990, pp. 559-593.
M. C. Almandoz, C. L. Pagliero, N. A. Ochoa, and J. Marchese, “Composite ceramic membranes from natural aluminosilicates for microfiltration applications,” Ceramics International, vol. 41, pp. 5621-5633, 5// 2015.
X. Li, Y. Wang, J. Pan, Z. Yang, Y. He, A. N. Mondal, and T. Xu, “The preparation and application of a low-cost multi-channel tubular inorganic–organic composite microfiltration membrane,” Separation and Purification Technology, vol. 151, pp. 131-138, 9/4/ 2015.
B. Guo, E. V. Pasco, I. Xagoraraki, and V. V. Tarabara, “Virus removal and inactivation in a hybrid microfiltration–UV process with a photocatalytic membrane,” Separation and Purification Technology, vol. 149, pp. 245-254, 7/27/ 2015.
L. V. Saboyainsta and J.-L. Maubois, “Current developments of microfiltration technology in the dairy industry,” Lait, vol. 80, pp. 541-553, 2000.
K. Hu, J. M. Dickson, and S. E. Kentish, “Microfiltration for casein and serum protein separation,” in Membrane Processing for Dairy Ingredient Separation, K. Hu and J. M. Dickson, Eds., ed Oxford, UK: John Wiley & Sons, Ltd, 2015, pp. 1-34.
E. D. Bastian, S. K. Collinge, and C. A. Ernstrom, “Ultrafiltration: Partitioning of Milk Constituents into Permeate and Retentate1,” Journal of Dairy Science, vol. 74, pp. 2423-2434.
F. V. Kosikowski and R. Jimenez-Flores, “Removal of Penicillin G from Contaminated Milk by Ultrafiltration,” Journal of Dairy Science, vol. 68, pp. 3224-3233.
N. Rajagopalan and M. Cheryan, “Total Protein Isolate from Milk by Ultrafiltration: Factors Affecting Product Composition,” Journal of Dairy Science, vol. 74, pp. 2435-2439.
N. Gringer, S. V. Hosseini, T. Svendsen, I. Undeland, M. L. Christensen, and C. P. Baron, “Recovery of biomolecules from marinated herring (Clupea harengus) brine using ultrafiltration through ceramic membranes,” LWT - Food Science and Technology, vol. 63, pp. 423- 429, 9// 2015.
W. Yu and N. J. D. Graham, “Performance of an integrated granular media – Ultrafiltration membrane process for drinking water treatment,” Journal of Membrane Science, vol. 492, pp. 164-172, 10/15/ 2015.
R. Ghosh and R. Sadavarte, “A technique for drying and storing a protein as a soluble composite thin film on the surface of an ultrafiltration membrane,” Journal of Membrane Science, vol. 490, pp. 256-265, 9/15/ 2015.
Shakeel-Ur-Rehman, “Reduced Lactose and Lactose-Free Dairy Products,” in Advanced dairy chemistry. Volume 3: Lactose, Water, Salts and Minor Constituents. vol. 3, P. F. Fox and P. L. H. McSweeney, Eds., 3rd. ed New York ; London: Kluwer Academic/ Plenum, 2009, p. 794.
C. Kaya, G. Sert, N. Kabay, M. Arda, M. Yüksel, and Ö. Egemen, “Pre-treatment with nanofiltration (NF) in seawater desalination— Preliminary integrated membrane tests in Urla, Turkey,” Desalination, vol. 369, pp. 10-17, 8/3/ 2015.
C.-V. Gherasim, K. Hancková, J. Palarčík, and P. Mikulášek, “Investigation of cobalt(II) retention from aqueous solutions by a polyamide nanofiltration membrane,” Journal of Membrane Science, vol. 490, pp. 46-56, 9/15/ 2015.
Y. Li, B. Qi, J. Luo, R. Khan, and Y. Wan, “Separation and concentration of hydroxycinnamic acids in alkaline hydrolyzate from rice straw by nanofiltration,” Separation and Purification Technology, vol. 149, pp. 315-321, 7/27/ 2015.
R. Garud, S. Kore, V. Kore, and G. Kulkarni, “A short review on process and applications of reverse osmosis,” Universal journal of Environmental research and technology, vol. 1, pp. 233-238, 2011.
S. M. Ibrahim, H. Nagasawa, M. Kanezashi, and T. Tsuru, “Robust organosilica membranes for high temperature reverse osmosis (RO) application: Membrane preparation, separation characteristics of solutes and membrane regeneration,” Journal of Membrane Science, vol. 493, pp. 515-523, 11/1/ 2015.
S. Bunani, E. Yörükoğlu, Ü. Yüksel, N. Kabay, M. Yüksel, and G. Sert, “Application of reverse osmosis for reuse of secondary treated urban wastewater in agricultural irrigation,” Desalination, vol. 364, pp. 68-74, 5/15/ 2015.
N. Nguyen, C. Fargues, W. Guiga, and M. L. Lameloise, “Assessing nanofiltration and reverse osmosis for the detoxification of lignocellulosic hydrolysates,” Journal of Membrane Science, vol. 487, pp. 40-50, 8/1/ 2015.
M. A. Sosa, D. A. Figueroa Paredes, J. C. Basílico, B. Van der Bruggen, and J. Espinosa, “Screening of pervaporation membranes with the aid of conceptual models: An application to bioethanol production,” Separation and Purification Technology, vol. 146, pp. 326-341, 5/26/ 2015.
T. A. Weschenfelder, P. Lantin, M. C. Viegas, F. de Castilhos, and A. d. P. Scheer, “Concentration of aroma compounds from an industrial solution of soluble coffee by pervaporation process,” Journal of Food Engineering, vol. 159, pp. 57-65, 8// 2015.
B. Zhang, P. Sampranpiboon, and X. Feng, “Pervaporative extraction of dairy aroma compounds,” in Membrane Processing for Dairy Ingredient Separation, K. Hu and J. M. Dickson, Eds., ed Oxford, UK: John Wiley & Sons, Ltd, 2015, pp. 176-229.
R. J. Jones, J. Massanet-Nicolau, A. Guwy, G. C. Premier, R. M. Dinsdale, and M. Reilly, “Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis,” Bioresource Technology, vol. 189, pp. 279-284, 8// 2015.
S. Caprarescu, M. C. Corobea, V. Purcar, C. I. Spataru, R. Ianchis, G. Vasilievici, and Z. Vuluga, “San copolymer membranes with ion exchangers for Cu(II) removal from synthetic wastewater by electrodialysis,” Journal of Environmental Sciences, vol. 35, pp. 27- 37, 9/1/ 2015.
C. Xue, Q. Chen, Y.-Y. Liu, Y.-L. Yang, D. Xu, L. Xue, and W.-M. Zhang, “Acid blue 9 desalting using electrodialysis,” Journal of Membrane Science, vol. 493, pp. 28-36, 11/1/ 2015.
H. Šímová, V. Kysela, and A. Černín, “Demineralization of natural sweet whey by electrodialysis at pilot-plant scale,” Desalination and Water Treatment, vol. 14, pp. 170-173, 2012.
L. Diblíková, L. Čurda, and K. Homolová, “Electrodialysis in whey desalting process,” Desalination and Water Treatment, vol. 14, pp. 208-213, 2012.
G. Q. Chen, F. I. I. Eschbach, M. Weeks, S. L. Gras, and S. E. Kentish, “Removal of lactic acid from acid whey using electrodialysis,” Separation and Purification Technology, vol. 158, pp. 230-237, 2016.
J. Ečer, J. Kinčl, and L. Čurda, “Using foil membranes for demineralization of whey by electrodialysis,” Desalination and Water Treatment, pp. 1-5, 2014.
H. R. Mueller and M.-C. Secretin, “Infant milk formula and process for its manufacture,” USA Patent Patent, 1980.
L. Bazinet, “Electrodialysis applications on dairy ingredients separation,” in Membrane Processing for Dairy Ingredient Separation, K. Hu and J. M. Dickson, Eds., ed Oxford, UK: John Wiley & Sons, Ltd, 2015, pp. 241-266.
T. Dong, L. Yang, M. Zhu, Z. Liu, X. Sun, J. Yu, and H. Liu, “Removal of cadmium(II) from wastewater with gas-assisted magnetic separation,” Chemical Engineering Journal, vol. 280, pp. 426-432, 11/15/ 2015.
K. Yusuf, A. Y. Badjah-Hadj-Ahmed, A. Aqel, and Z. A. Alothman, “Fabrication of zeolitic imidazolate framework-8-methacrylate monolith composite capillary columns for fast gas chromatographic separation of small molecules,” Journal of Chromatography A, vol. 1406, pp. 299-306, 8/7/ 2015.
K. R. Marshall and W. J. Harper, “Whey protein concentrates,,” IDF Bulletin, vol. 233, pp. 21-32, 1988.
U. Kulozik, “Structuring dairy products by means of processing and matrix design,” in Food Materials Science - Principles and Practice, J. M. Aguilera and P. J. Lillford, Eds., ed New York: Springer, 2008, pp. 439-473.
S. Young. (2007, Whey Products in Ice Cream and Frozen Dairy Desserts. Applications Monograph, 1-12. Available: http://www.usdec. org/files/PDFs/2008Monographs/WheyIceCreamandDairyDesserts_ English.pdf
K. Posada, D. M. Terán, and J. S. Ramírez-Navas, “Empleo de lactosuero y sus componentes en la elaboración de postres y productos de confitería,” La Alimentación Latinoamericana, vol. 292, pp. 66-75, 2011.