Tecnología de membranas: Ultrafiltración
Resumen
Las Tecnologías de Membranas TM tienen gran incidencia en el desarrollo de nuevos y mejores productos, en la conservación del medio ambiente, en la industria de pinturas y la medicina, entre otros. En la industria de los alimentos las TM se aplican en diversas áreas, por ejemplo, en la desalinización de agua de mar, en el tratamiento de aguas residuales y en la clarifi cación de jugos. En el caso de los lácteos, se la ha empleado en la producción de nuevos derivados, como es el caso de las proteínas del lactosuero o la lactosa. En la presente revisión, se estudió el uso de la Ultrafi ltración UF. Se hace un especial énfasis en la industria láctea, donde se esboza el creciente auge de las TM, gracias a que permite la retención y separación de partículas, a que es amigable con el medio ambiente y a que permite el desarrollo de nuevos alimentos. Finalmente es indispensable continuar buscando alternativas para controlar la colmatación de las membranas, logrando extender la vida útil de estos materiales, ya que es el fenómeno que más las afecta.
Descargas
Citas
H. Muñoz Guerrero, “Gestión medioambiental de salmueras de desalado de bacalao. Tratamiento mediante tecnología de membranas,” Tesis doctoral, Universitat Politècnica de València, València, España, 2010.
K. J. Hwang and T. T. Lin, “Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration,” Journal of Membrane Science, vol. 199, pp. 41-52, 2002.
M. Mulder, Basic Principles of Membrane Technology, 2nd ed. London, UK, 1996.
F. Vaillant, A. Millan, M. Dornier, M. Decloux, and M. Reynes, “Strategy for economical optimisation of the clarification of pulpy fruit juices using crossflow microfiltration,” Journal of Food Engineering, vol. 48, pp. 83-90, 2001.
H. L. Gallego Ocampo, “Factores que influyen en la colmatación de membranas de microfiltración tangencial y representación matemática,” Revista RECITEIA, vol. 11, pp. 187-210, 2011.
C. Solís, C. Vélez, and J. S. Ramírez-Navas, “Tecnología de membranas: desarrollo histórico,” Entre Ciencia e Ingeniería, vol. 19, pp. 89-98, 2016.
P. Meares, “Material science of synthetic membranes: D. R. Lloyd (ed.) ACS symposium series no. 269, American Chemical Society, Washington, D.C., ix + 492 pages, US$79.95, export US$95.75 ISBN 0-8412-0887-5,” Polymer, vol. 27, p. 1138, 7// 1986.
A. Sotto Díaz, “Aplicación de la tecnología de membranas de nanofiltración y ósmosis inversa para el tratamiento de disoluciones acuosas de compuestos fenólicos y ácidos carboxílicos,” Doctorado, Departamento de Tecnología Quimica y Ambiental, Universidad Rey Juan Carlos, Madrid, España, 2008.
R. W. Baker, “Concentration Polarization,” in Membrane Technology and Applications, ed: John Wiley & Sons, Ltd, 2004, pp. 161-190.
T. Araki and H. Tsukube, Liquid membranes : chemical applications. Boca Raton, Fla. USA: CRC Press, 1990.
L. Liang, Q. Gan, and P. Nancarrow, “Composite ionic liquid and polymer membranes for gas separation at elevated temperatures,” Journal of Membrane Science, vol. 450, pp. 407-417, 1/15/ 2014.
L. M. Robeson, W. F. Burgoyne, M. Langsam, A. C. Savoca, and C. F. Tien, “High performance polymers for membrane separation,” Polymer, vol. 35, pp. 4970-4978, 11// 1994.
R. Ghosh and Z. F. Cui, AIChE J., vol. 44, p. 61, 1998.
N. Lakshminarayanaiah and F. A. Siddiqi, “Studies with composite membranes. 3. Measurement of water permeability,” Biophys J, vol. 12, pp. 540-51, May 1972.
P. Sukitpaneenit and T.-S. Chung, “Fabrication and use of hollow fiber thin film composite membranes for ethanol dehydration,” Journal of Membrane Science, vol. 450, pp. 124-137, 1/15/ 2014.
M. Kumar, M. A. Khan, Z. A. AlOthman, and M. R. Siddiqui, “Polyaniline modified organic–inorganic hybrid cation-exchange membranes for the separation of monovalent and multivalent ions,” Desalination, vol. 325, pp. 95-103, 9/16/ 2013.
R. R. Bhave, J. Guibaud, B. T. De La Fuente, and V. Venkataraman, “Inorganic Membranes in Food and Biotechnology Applications,” in Inorganic Membranes Synthesis, Characteristics and Applications, ed: Springer Netherlands, 1991, pp. 208-274.
A. Hernández, F. Tejerina, J. I. Arribas, L. Martínez, and F. Martínez, Microfiltración, ultrafiltración y ósmosis inversa. Murcia, España: Secretariado de Publicaciones de la Universidad de Murcia, 1990.
R. Ibañez Lorente, “Estudio de la Ultrafiltación de Proteínas Modelo con Membranas Cerámicas,” Tesis de Doctorado, Universidad de Granada, Granada, España, 2007.
M. Rosenberg, “Current and future applications for membrane processes in the dairy industry,” Trends in Food Science & Technology, vol. 6, pp. 12-19, 1// 1995.
A. Chacón-Villalobos, “Tecnologías de membranas en la agroindustria láctea,” Agronomía Mesoamericana, vol. 17, pp. 243-263, 2006.
A. F. de Carvalho and J. L. Maubois, Engineering Aspects of Milk and Dairy Products. Boca Raton, 2010.
C. J. Geankoplis, Transport processes and separation process principles, 4th ed. Upper Saddle River, NJ, USA: Prentice Hall Professional Technical Reference, 2003.
S. K. Sharma, S. J. Mulvaney, and S. S. H. Rizvi, Food process engineering : theory and laboratory experiments. New York, USA: Wiley-Interscience, 2000.
R. Ghosh, “Biopharmaceutical Separations by Ultrafiltration,” in Advanced Membrane Technology and Applications, ed: John Wiley & Sons, Inc., 2008, pp. 435-450.
Y. Yoon, G. Amy, J. Cho, and N. Her, “Effects of retained natural organic matter (NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration,” Desalination, vol. 173, pp. 209-221, 3/20/ 2005.
H. G. Ramachandra Rao, “Mechanisms of flux decline during ultrafiltration of dairy products and influence of pH on flux rates of whey and buttermilk,” Desalination, vol. 144, pp. 319-324, 9/10/2002.
W. R. Bowen and F. Jenner, “Theoretical descriptions of membrane filtration of colloids and fine particles: An assessment and review,” Advances in Colloid and Interface Science, vol. 56, pp. 141-200, 3/29/ 1995.
S. Shirazi, C.-J. Lin, and D. Chen, “Inorganic fouling of pressuredriven membrane processes — A critical review,” Desalination, vol. 250, pp. 236-248, 1/1/ 2010.
T. Mohammadi, A. Kohpeyma, and M. Sadrzadeh, “Mathematical modeling of flux decline in ultrafiltration,” Desalination, vol. 184, pp. 367-375, 11/1/ 2005.
M. C. Almécija, R. Ibáñez, A. Guadix, and E. M. Guadix, “Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane,” Journal of Membrane Science, vol. 288, pp. 28-35, 2007.
A. Fernández, A. Suárez, Y. Zhu, R. J. FitzGerald, and F. A. Riera, “Membrane fractionation of a β-lactoglobulin tryptic digest: Effect of the pH,” Journal of Food Engineering, vol. 114, pp. 83-89, 1// 2013.
D. Lucas, M. Rabiller-Baudry, L. Millesime, B. Chaufer, and G. Daufin, “Extraction of α-lactalbumin from whey protein concentrate with modified inorganic membranes,” Journal of Membrane Science, vol. 148, pp. 1-12, 1998.
S. Bhattacharjee, C. Bhattacharjee, and S. Datta, “Studies on the fractionation of β-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography,” Journal of Membrane Science, vol. 275, pp. 141-150, 4/20/ 2006.
A. Arunkumar and M. R. Etzel, “Fractionation of α-lactalbumin from β-lactoglobulin using positively charged tangential flow ultrafiltration membranes,” Separation and Purification Technology, vol. 105, pp. 121-128, 2/5/ 2013.
S. Metsämuuronen and M. Nyström, “Enrichment of α-lactalbumin from diluted whey with polymeric ultrafiltration membranes,” Journal of Membrane Science, vol. 337, pp. 248-256, 7/15/ 2009.
S. Bhushan and M. R. Etzel, “Charged Ultrafiltration Membranes Increase the Selectivity of Whey Protein Separations,” Journal of Food Science, vol. 74, pp. E131- E139, 2009.
R. Atra, G. Vatai, E. Bekassy-Molnar, and A. Balint, “Investigation of ultra- and nanofiltration for utilization of whey protein and lactose,” Journal of Food Engineering, vol. 67, pp. 325-332, 4// 2005.
J.-H. Huang, S.-H. Guo, G.-M. Zeng, Y.-L. Xiong, D.-M. Zhang, X.-J. Tang, and G.-X. Xie, “Prediction of fouling resistance and permeate flux in cross-flow micellar-enhanced ultrafiltration (MEUF),” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 401, pp. 81-89, 2012.
R. W. Baker, “Ultrafiltration,” in Membrane Technology and Applications, ed: John Wiley & Sons, Ltd, 2012, pp. 253-302.
A. Muller, G. Daufin, and B. Chaufer, “Ultrafiltration modes of operation for the separation of α-lactalbumin from acid casein whey,” Journal of Membrane Science, vol. 153, pp. 9-21, 1999.
R. van Reis, E. M. Goodrich, C. L. Yson, L. N. Frautschy, R. Whiteley, and A. L. Zydney, “Constant Cwall ultrafiltration process control,” Journal of Membrane Science, vol. 130, pp. 123-140, 1997.
T. W. Perkins, S. Saksena, and R. van Reis, “A dynamic film model for ultrafiltration,” Journal of Membrane Science, vol. 158, pp. 243- 256, 6/1/ 1999.
N. García-Martín, V. Silva, F. J. Carmona, L. Palacio, A. Hernández, and P. Prádanos, “Pore size analysis from retention of neutral solutes through nanofiltration membranes. The contribution of concentration–polarization,” Desalination, vol. 344, pp. 1-11, 7/1/2014.
Vital and J. M. Sousa, “1 - Polymeric membranes for membrane reactors,” in Handbook of Membrane Reactors. vol. 1, A. Basile, Ed., ed: Woodhead Publishing, 2013, pp. 3-41.
D. Sen, A. Sarkar, A. Gosling, S. L. Gras, G. W. Stevens, S. E. Kentish, P. K. Bhattacharya, A. R. Barber, and C. Bhattacharjee, “Feasibility study of enzyme immobilization on polymeric membrane: A case study with enzymatically galacto-oligosaccharides production from lactose,” Journal of Membrane Science, vol.378, pp. 471-478, 8/15/2011.
C. Y. Ng, A. W. Mohammad, L. Y. Ng, and J. M. Jahim, “Membrane fouling mechanisms during ultrafiltration of skimmed coconut milk,” Journal of Food Engineering, vol. 142, pp. 190-200, 12// 2014.
S. V. Crowley, V. Caldeo, N. A. McCarthy, M. A. Fenelon, A. L. Kelly, and J. A. O’Mahony, “Processing and protein-fractionation characteristics of different polymeric membranes during filtration of skim milk at refrigeration temperatures,” International Dairy Journal, vol. 48, pp. 23-30, 9// 2015.
M. Kumar and J. Lawler, “Preparation and characterization of negatively charged organic–inorganic hybrid ultrafiltration membranes for protein separation,” Separation and Purification Technology, vol. 130, pp. 112-123, 6/10/ 2014.
S. Popović, S. Milanović, M. Iličić, M. Djurić, and M. Tekić, “Flux recovery of tubular ceramic membranes fouled with whey proteins,” Desalination, vol. 249, pp. 293-300, 11/30/ 2009.
K. Smith, “Commercial Membrane Technology,” in Membrane Processing, ed: Blackwell Publishing Ltd., 2013, pp. 52-72.
G. Gésan-Guiziou, “Liquid Milk Processing,” in Membrane Processing, ed: Blackwell Publishing Ltd., 2013, pp. 128-142.
K. Posada, D. M. Terán, and J. S. Ramírez-Navas, “Empleo de lactosuero y sus componentes en la elaboración de postres y productos de confitería,” La Alimentación Latinoamericana, vol. 292, pp. 66-75, 2011.
A. M. Pérez, “Interés de la aplicación de las tecnologías de membranas en la industria de alimentos,” ed. San José de Costa Rica: Centro Nacional de Ciencia y Tecnología de Alimentos - CITA, p. 3.
B. Özer and A. Y. Tamime, “Membrane Processing of Fermented Milks,” in Membrane Processing, ed: Blackwell Publishing Ltd., 2013, pp. 143-175.
V. V. Mistry, “Cheese,” in Membrane Processing, ed: Blackwell Publishing Ltd., 2013, pp. 176-192.
L. Ramchandran and T. Vasiljevic, “Whey Processing,” in Membrane Processing, ed: Blackwell Publishing Ltd., 2013, pp. 193-207.
G. Konrad and T. Kleinschmidt, “A new method for isolation of native α-lactalbumin from sweet whey,” International Dairy Journal, vol. 18, pp. 47-54, 2008.
F. Chiampo and R. Conti, “Hydrodynamics of fruit pulp ultrafiltration,” Journal of Food Engineering, vol. 40, pp. 173-180, 1999.
A. D. Marshall, M. P.A., and T. G., “Influence of permeate flux on fouling during the microfiltration of [beta]-lactoglobulin solutions under cross-flow conditions,” Journal of Membrane Science, vol. 130, pp. 23-30, 1997.
C. C. Ho and A. L. Zydney, “A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration,” Journal of Colloid and Interface Science, vol. 232, pp. 389-399, 2000.
C. C. Ho and A. L. Zydney, “Transmembrane pressure profiles during constant flux microfiltration of bovine serum albumin,” Journal of Membrane Science, vol. 209, pp. 363-377, 2002.
K. Inoue, S. Nitta, T. Hino, and H. Oka, “LC-MS/MS and centrifugal ultrafiltration method for the determination of novobiocin in chicken, fish tissues, milk and human serum,” Journal of Chromatography B, vol. 877, pp. 461-464, 2/1/ 2009.
T. Bergillos-Meca, C. Cabrera-Vique, R. Artacho, M. Moreno- Montoro, M. Navarro-Alarcón, M. Olalla, R. Giménez, I. Seiquer, and M. D. Ruiz-López, “Does Lactobacillus plantarum or ultrafiltration process improve Ca, Mg, Zn and P bioavailability from fermented goats’ milk?,” Food Chemistry, vol. 187, pp. 314-321, 11/15/ 2015.
S. V. Crowley, T. F. O’Callaghan, A. L. Kelly, M. A. Fenelon, and J. A. O’Mahony, “Use of ultrafiltration to prepare a novel permeate for application in the functionality testing of infant formula ingredients,” Separation and Purification Technology, vol. 141, pp. 294-300, 2/12/ 2015.
K. Kishida, “Simplified extraction of tetracycline antibiotics from milk using a centrifugal ultrafiltration device,” Food Chemistry, vol. 126, pp. 687-690, 5/15/ 2011.
N. Hengl, Y. Jin, F. Pignon, S. Baup, R. Mollard, N. Gondrexon, A. Magnin, L. Michot, and E. Paineau, “A new way to apply ultrasound in cross-flow ultrafiltration: Application to colloidal suspensions,” Ultrasonics Sonochemistry, vol. 21, pp. 1018-1025, 5// 2014.