Aplicaciones del Procesamiento de Lenguaje Natural
Resumen
Actualmente en la academia es común hablar del concepto de industria 4.0 y la gran influencia que tiene en los diferentes procesos de las empresas porque trata de combinar técnicas avanzadas de producción y operaciones con tecnologías inteligentes [1]. La Inteligencia Artificial (IA) es una de las tecnologías más utilizadas para contribuir con ese objetivo, porque se refiere a los sistemas informáticos con capacidad de tomar datos de entrada, luego aprender de ellos y utilizarlos para llevar a cabo tareas como el aprendizaje automático, el aprendizaje profundo, procesamiento de lenguaje natural y la visión por computador [2].
Descargas
Referencias
E. Oztemel y S. Gursev, «Literature review of Industry 4.0 and related technologies», J Intell Manuf, vol. 31, n.o 1, pp. 127-182, ene. 2020, doi: 10.1007/s10845-018-1433-8.
E. O. Benefo et al., «Ethical, legal, social, and economic (ELSE) implications of artificial intelligence at a global level: a scientometrics approach», AI Ethics, pp. 1-16, ene. 2022, doi: 10.1007/s43681-021-00124-6.
R. Mitkov, The Oxford Handbook of Computational Linguistics, 1.a ed. Oxford, UK: Oxford University Press, 2003.
J. C. Blandón Andrade y C. M. Zapata Jaramillo, «Gate-Based Rules for Extracting Attribute Values», Computación y Sistemas, vol. 25, n.o 4, Art. n.o 4, dic. 2021, doi: 10.13053/cys-25-4-3493.
M. Jiang, Y. Zou, J. Xu, y M. Zhang, «GATSum: Graph-Based Topic-Aware Abstract Text Summarization», Information Technology and Control, vol. 51, n.o 2, pp. 345-355, 2022, doi: 10.5755/j01.itc.51.2.30796.
M. A. H. Wadud, M. F. Mridha, J. Shin, K. Nur, y A. K. Saha, «Deep-BERT: Transfer Learning for Classifying Multilingual Offensive Texts on Social Media», Computer Systems Science and Engineering, vol. 44, n.o 2, pp. 1775-1791, 2023, doi: 10.32604/csse.2023.027841.
P. Bonifacci, E. Colombini, M. Marzocchi, V. Tobia, y L. Desideri, «Text-to-speech applications to reduce mind wandering in students with dyslexia», J. Comput. Assist. Learn., vol. 38, n.o 2, pp. 440-454, abr. 2022, doi: 10.1111/jcal.12624.
B. Büttner, M. Firat, y E. Raiteri, «Patents and knowledge diffusion: The impact of machine translation», Research Policy, vol. 51, n.o 10, 2022, doi: 10.1016/j.respol.2022.104584.
R. H. Ali, G. Pinto, E. Lawrie, y E. J. Linstead, «A large-scale sentiment analysis of tweets pertaining to the 2020 US presidential election», Journal of Big Data, vol. 9, n.o 1, 2022, doi: 10.1186/s40537-022-00633-z.
J. P. Usuga-Cadavid, S. Lamouri, B. Grabot, y A. Fortin, «Using deep learning to value free-form text data for predictive maintenance», Int. J. Prod. Res., vol. 60, n.o 14, pp. 4548-4575, 2022, doi: 10.1080/00207543.2021.1951868.
L. C. de Araujo, A. de L. Benevides, y J. P. H. Sansao, «Developing a spell checker», Texto Livre, vol. 14, n.o 1, p. e26469, abr. 2021, doi: 10.35699/1983-3652.2021.26469.
Y. Benjelloun Touimi, A. Hadioui, N. El Faddouli, y S. Bennani, «Intelligent Chatbot-LDA Recommender System», Int. J. Emerg. Technol. Learn., vol. 15, n.o 20, pp. 4-20, 2020, doi: 10.3991/ijet.v15i20.15657.