System of recommendations of multimedia contents for academic communities in IDT environments
DOI:
https://doi.org/10.31908/19098367.594Keywords:
communities, recommendation, systems, iDT, mobile TVAbstract
Some of the reasons why Mobile TV based on the DVB-H standard is not widely used by viewers as conventional TV are the lack of support for bi-directional interaction when using TV services, the time required to switch from one channel to other, the relatively low average usage time of the mobile TV service, and the absence of an open middleware for the development of interactive mobile TV applications. This paper presents a recommendation system of multimedia content, based on collaborative filtering and using Naive Bayes classifier as an alternative to the problems of channel hopping and access to multimedia content on the television environment mentioned above. The recommendation system is part of a system of mobile TV services usage and has been evaluated by TV virtual academic communities, built in the ST-CAV project of Universidad del Cauca.
Downloads
References
P. Rost, R. Boutaba, K. Doppler, and A. Gumaste, “Recent Advances in Network Convergence,” Computer Networks, vol. 55, pp. 1455- 1458, 2011.
DVB-H , “Transmission System for Handheld Terminals (DVB-H),” ETSI, Informe de Implementación 2004.
DVB-H. DVB Mobile TV - DVB-H - DVB-SH - DVB-IPDC. [Online]. http://www.dvb-h.org
R Fernandez. (2006) [Online]. http://ficheros.molamiweb.com/webs/ coyan/trabajo-DVB-texto.pdf
T. Itagaki, J. Cosmas, and M. Haque, “An interactive digital television system designed for synchronised and scalable multi-media content over DVB and IP networks,” in Multimedia and Expo, 2004. ICME ‘04. 2004 IEEE International Conference, 2004, pp. 2155-2158.
tecnologiahechapalabra.com. (2009) Apagón Analógico. [Online]. http://www.tecnologiahechapalabra.com/tecnologia/glosario_ tecnico/articulo.asp?i=4148
R. Schatz, N. Jordan, and S. Wagner, “Beyond Broadcast--A Hybrid Testbed for Mobile TV 2.0 Services,” in Networking, 2007. ICN ‘07. Sixth International Conference, 2007, pp. 22-28.
C. Acevedo, G. Chanchí, and J., Arciniegas, “Surveying Mobile Television,” International Journal of Communication Networks and Information Security (IJCNIS), vol. III, no. 1, Abril 2011.
K. Pripuzic et al., “Building an IPTV VoD Recommender System: An Experience Report,” in ConTEL 2013-12th International Conference on, 2013, pp. 155-162.
Roberto. Turrin and Paolo Cremonesis, “Recomender Systems for Interactive TV,” in Tutorial In Proceedings of euroITV 2010, 2010.
H. Zhang and S. Sheng, “Personalized TV program recommendation based on TV-anytime metadata,” in In Consumer Electronics - (ISCE 2005), St. Louis Missouri – USA, 2005, pp. 242 – 246.
M. Dabrowski, J. Gromada, and H. Moustafa, “Context-Awareness for IPTV Services Personalization,” in In Ubiquitous Computing International Conference (IMIS 2012), 2012, pp. 37-44.
S. Song, H. Moustafa, and H. Afifi, “IPTV Services Personalization Through Context Aware Content Recommendation,” Multimedia, IEEE Transactions, vol. 14, no. 6, pp. 1528-1537, Diciembre 2012.
C. Porcel, A.G. López-Herrera, and E. Herrera-Viedma, “A Recommender System for Research Resources based on Fuzzy Linguistic Modeling,” Expert Systems with, pp. 5173-5183, 2009.
C. Porcel, J.M. Moreno, and E. Herrera-Viedma, “A multi-disciplinar recommender system to advice research resources in University Digital Libraries,” Expert Systems with Applications, vol. 10, no. 12520-12528, 2010.
C. Porcel, A. Tejeda-Lorente, M.A. Martínez, and E. Herrera-Viedma, “A hybrid recommender system for the selective dissemination of research resources in a technology transfer office,” Information Sciences, pp. 1-19, 2012.
G Chanchí, W Campo, J. Amaya, and J. Arciniegas, “Esquema de servicios para Televisión Digital Interactiva, basados en el protocolo REST-JSON,” in Proceedings of the VI Congresso Ibero-americano de Telemática - CITA 2011, Gramado, 2011.
G. Chanchí and J. Arciniegas, “Arquitectura para el soporte de servicios interactivos de TV Móvil, apoyada en sistemas de recomendaciones y búsqueda semántica,” Universidad del Cauca, Popayán, Tesis de Maestría en Ingeniería Telemática 2013.
J. Amaya, F. Urbano, W. Campo, and J Arciniegas, “Infraestructura Tecnológica para un laboratorio experimental de Televisión Digital Interactiva,” in Congreso Colombiano de Computaciíon, PopayánColombia, 2008.
Proyecto ST-CAV Universidad del Cauca. (2011) Proyecto ST-CAV: Servicios de T-Learning para el soporte de Comunidades Academicas Virtuales. [Online]. http://www.unicauca.edu.co/STCAV/
G. Chanchí, W. Campo, and J. Arciniegas, “Directrices para el soporte de Comunidades Académicas Virtuales en TDi,” in VI Congreso Internacional de Telecomunicaciones – CITTEL, La Habana-Cuba, 2010.
Prem Melville, Raymond J. Mooney, and Ramadass Nagarajan, “Content-Boosted Collaborative Filtering for Improved Recommendations,” Universidad de Texas, 2002.
H. Park, J. Yoo, and S. Cho, “A Context-Aware Music Recommendation System Using Fuzzy Bayesian Networks with Utility Theory,” in Proceedings of the Third international conference on Fuzzy Systems and Knowledge Discovery, Berlín, 2006, pp. 970-979.
D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender Systems: An Introduction. New York , USA: Cambridge University Press, 2010.
C. Damme, M. Hepp, and K. Sioapaes, “FolksOntology: An Integrated Aproach for Turning Falcsonomies into Ontologies,” in Semantic Web and Web 2.0 (SemNet 2007), 2007, pp. 55-70.
Tim O’Reilly. (2005) What is web 2.0: design patterns and business models for the next generation of software. [Online]. http://oreilly. com/web2/archive/what-is-web-20.html
Macarena Blando. (2003) Comunidades Académicas Virtuales: Compartir para mejorar. [Online]. www.te.ipn.mx/ comunidadesvirtuales/
S. Tyagi. (2006, Agosto) Oracle - RESTful Web Services. [Online]. http://www.oracle.com/technetwork/articles/javase/index-137171. html
json.org. Introducción a JSON. [Online]. http://json.org/json-es.html
N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison of JSON and XML Data Interchange Formats: A Case Study,” in International Conference on Computer Applications in Industry and Engineering, San Francisco, 2009.
Alexander Felfernig and Gerhard Friedrich, “Recommender System,” University of Klagenfurt Lars Schmidt-Thieme, 2007.
Markus Zanker, Dietmar Jannach, and Sergiu Gordea, “Comparing Recommendation Strategies in a Commercial Context,” University Klagenfurt, 2007.
C. Malagón. (2003, Mayo) Calsificadores Bayesianos. El algoritmo Naive Bayes. [Online]. http://www.nebrija.es/~cmalagon/inco/ Apuntes/bayesian_learning.pdf
M. Ghazanfar and A. Prugel-Bennett, “An Improved Switching Hybrid Recommender System Using Naive Bayes Classifier and Collaborative Filtering,” in In the 2010 IAENG International Conference on Data Mining and Applications, Hong Kong, 2010, pp. 17-19.
sourceforge.net. DVB Tools. [Online]. http://sourceforge.net/projects/ dvbtools/
sourceforge.net. dvbsnoop. [Online]. http://dvbsnoop.sourceforge.net
videolan.org. VLC. [Online]. http://www.videolan.org/vlc/
microemu.org. MicroEmulator. [Online]. http://www.microemu.org/
C. Hartmann. (2008) RestClient library. [Online]. http://www.acidum. de/2008/12/29/j2me-rest-client
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Entre ciencia e ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.