Effect of the Normal Force upon the Friction Coefficient between two Solid Surfaces

Keywords: friction, friction coefficient, normal force, classical laws of friction, Coulomb friction

Abstract

The results of the research related to the dependency of the frictioncoefficient, µ, between two solid surfaces, on the normal force, N, ispresented. A review of models and experimental results in this area ismade, and results of friction experiments with steel wire bristles for streetsweepers are referred. Many theoretical and experimental works haveshown that µ may increase or decrease when N increases. However, theliterature indicates that mostly µ reduces as N is increased. This mainlyoccurs for small forces and very smooth surfaces. It is concluded thatthis phenomenon may be caused by several factors. Adhesion forces,which affect very smooth surfaces, tend to be significant when N is smalland have the effect of increasing µ. The differences in the contact radii ofthe asperities may also cause this phenomenon. When N is small, a greatnumber of asperities in contact have small radii, and large shear frictionstresses may be developed. In contrast, for large forces, the larger contactradii dominate friction; friction stresses, which are smaller than the shearones, appear producing small friction coefficients. It is also concluded thatthe change from elastic contact, for small forces, to elastic-plastic contact,for larger ones, may reduce µ when N increases.

Downloads

Download data is not yet available.

Author Biographies

Libardo Vicente Vanegas-Useche

Ph.D. in Mechanical Engineering,M.Sc. in Advanced Manufacturing TechnologyProfesor Titular Facultad de Ingeniería Mecánica Universidad Tecnológica de Pereira Grupo de Investigación en Procesos de Manufactura y Diseño de Máquinas

Juan Felipe Arroyave Londoño

Ingeniero Mecánico M.Sc. Sistemas Automáticos de Producción Profesor Asistente Universidad Tecnológica de Pereira Grupo de Investigación en Tecnología Mecánica

Magd M. Abdel-Wahab

Ph.D., D.Sc., M.Sc., B.Sc. Professor Faculty of Engineering and ArchitectureGhent University, Belgium

References

Adams, G. G., Müftü, S., & Azhar, N. M. (2003). A Scale-dependent Model for Multi-asperity Contact and Friction. J. Tribology – Transactions of the ASME 125, 700-708.

Adams, G. G., & Müftü, S. (2005). Improvements to a Scaledependent Model for Contact and Friction. J. Physics D: Applied Physics 38, 1402-1409.

Archard, J. F. (1961). Single Contacts and Multiple Encounters. J. Applied Physics 32 (8) 1420-1425.

Chang, W. R., Etsion, I., & Bogy, D. B. (1987). Elastic Plastic Model for the Contact of Rough Surfaces. J. Tribology – Transactions of the ASME 109, 257-262.

Chang, W. R., Etsion, I., & Bogy, D. B. (1988). Static Friction Coefficient Model for Metallic Rough Surfaces. J. Tribology – Transactions of the ASME 110, 57-63.

Comaish, S. & Bottoms, E. (1971). The Skin and Friction: Deviations from Amonton’s Laws, and the Effects of Hydration and Lubrication. Br. J. Dermatology 84 (1), 37-43.

Etsion, I., & Amit, M. (1993). The Effect of Small Normal Loads on the Static Friction Coefficient for very Smooth Surfaces. J. Tribology – Transactions of the ASME 115, 406-410.

Etsion, I., Levinson, O., Halperin, G., & Varenberg, M. (2005). Experimental Investigation of the Elastic-plastic Contact Area and Static Friction of a Sphere on Flat. J. Tribology – Transactions of the ASME 127, 47-50.

Greenwood, J. A., & Williamson, J. B. P. (1966). Contact of Nominally Flat Surfaces. Proc. R. Soc. London. Ser. A 295, 300-319.

Han, H.-Y., Shimada, A., & Kawamura, S. (1996). Analysis of Friction on Human Fingers and Design of Artificial Fingers. In IEEE International Conference on Robotics and Automation. Minneapolis, Minesota, p. 3061-3066.

Jeong, S.-H., & Yong, S.-J. (2007). Friction and Wear Characteristics Due to Stick-slip under Fretting Conditions. Tribology Transactions 50, 564-572.

Jeswiet, J., Arentoft, M., & Henningsen, P. (2005). Methods and Devices Used to Measure Friction in Rolling. Proc. IMechE Part B: J. Engineering Manufacture 220, 49-57.

Kogut, L., & Etsion, I. (2002). Elastic-plastic Contact Analysis of a Sphere and a Rigid Flat. J Applied Mechanics – Transactions of the ASME 69, 657-662.

Kogut, L., & Etsion, I. (2003). A Semi-analytical Solution for the Sliding Inception of a Spherical Contact. J Tribology – Transactions of the ASME 125, 499-506.

Koudine, A. A., Barquins, M., Anthoine, P. H., Aubert, l., & Leveque, J. L. (2000). Frictional Properties of Skin: Proposal of a New Approach. Int. J. Cosmet. Sci. 22, 11-20.

McDonnell, M. N., Ridding, M. C., Flavel, S. C., & Miles T. S. (2005). Effect of Human Grip Strategy on Force Control in Precision Tasks. Expl. Brain Res. 16, 1368-1373.

Nolle, H., & Richardson, R. S. H. (1974). Static Friction Coefficients for Mechanical and Structural Joints. Wear 28, 1-13.

Paslay, P. R., & Plunkett, R. (1953). Design of Shrink-fits. Transactions of the ASME 75, 1199-1202.

Pullen, J., & Williamson, J. B. P. (1972). On the Plastic Contact of Rough Surfaces. Proc. R. Soc. London. Ser. A 327, 159-173.

Rabinowicz, E. (1986). The Tribology of Magnetic Recording Systems – an Overview. Tribology and Mechanics of Magnetic Storage Systems 3, 1-7.

Rabinowicz, E. (1995). Friction and Wear of Materials. 2nd edition, New York: John Wiley & Sons, Inc.

Rabinowicz, E., & Kaymaram, F. (1991). On the Mechanism of Failure of Particulate Rigid Disks. Tribology Transactions 34 (4), 618-622.

Sahoo, P., & Chowdhury, S. K. R. (2000). A Fractal Analysis of Adhesive Friction between Rough Solids in Gentle Sliding. Proc. I MECH E Part J. Eng. Tribology 214, 583-595.

Sivamani, R. K., Goodman, J., Gitis, N. V., & Maibach, H. I. (2003). Friction Coefficient of Skin in Real Time. Skin Res. Technol. 9, 235-239.

Tomlinson, S. E., Lewis, R., & Carré, M. J. (2007a). Improving the Understanding of Grip. In The Impact of Technology on Sport II, p. 129-134.

Tomlinson, S. E., Lewis, R., & Carré, M. J. (2007b). Review of the Frictional Properties of Finger-object Contact when Gripping. Proc. IMechE, Part J: J. Engineering Tribology 221, 841-850.

Unal, H., & Findik, F. (2008). Friction and Wear Behaviours of some Industrial Polyamides against different Polymer Counterparts under Dry Conditions. Industrial Lubrication and Tribology 60 (4), 195-200.

Unal, H., & Mimaroglu, A. (2003). Friction and Wear Behaviour of Unfilled Engineering Thermoplastics. Materials and Design 24 (3), 183-187.

Unal, H., Mimaroglu, A., & Arda, T. (2006). Friction and Wear Performance of some Thermoplastic Polymers and Polymer Composites against Unsaturated Polyester. Applied Surface Science 252 (23), 8139-8146.

Unal, H., Sen, U., & Mimaroglu, A. (2004). Dry Sliding Wear Characteristics of some Industrial Polymers against Steel Counterface. Tribology International 37 (9), 727-732.

Zatsiorsky, V. M. (2002). Kinetics of Human Motion. In: Human Kinetics, Champaign, Leeds.

Published
2011-12-23
How to Cite
Vanegas-Useche, L., Arroyave Londoño, J., & Abdel-Wahab, M. (2011). Effect of the Normal Force upon the Friction Coefficient between two Solid Surfaces. Entre Ciencia E Ingeniería, 5(10), 75-92. Retrieved from https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/720./index.php/entrecienciaeingenieria/article/view/720
Section
Artículos