Nuevas tecnologías y aplicaciones del radio definido por software en entornos agrícolas: una revisión del estado del arte

Autores/as

DOI:

https://doi.org/10.31908/19098367.3139

Palabras clave:

Radio definido por Software, GNU Radio, Compostaje, Sistema Monitoreo Ambiental, Redes de sensores inalámbricos

Resumen

Se presenta una investigación de los avances que han tenido los sistemas de Radiocomunicaciones sobre el concepto de radio definido por software en el ámbito agrícola, en dispositivos de comunicación y aplicaciones para la toma de datos en sensores inalámbricos en los últimos años, conociendo de una mejor manera sus generalidades y aplicaciones. Por lo tanto, se sostiene que su acelerada difusión se debe a la facilidad de implementación en el ámbito agrario, tanto para aquellos con conocimientos básicos, expertos en la materia y en el contexto educativo relacionado con la agricultura. Está revisión también contiene la información sobre los diseños del software de GNU radio, circuitos de redes de sensores, entre otros. Adicionalmente, estos sistemas de radio definida por software con GNU radio, han tenido un gran impacto en la actualidad a causa de sus múltiples beneficios, ya que cuenta con una programación de estructura de bloques. Por lo cual, este articulo permite contemplar la necesidad de cubrir las líneas de investigación referentes a esta temática con panoramas continentales con un intervalo de tiempo del 2012 al 2023, donde la búsqueda de la información se obtiene de datos bibliográficos en un alto impacto, para estar a la avanzada en la evolución tecnología del mundo de las telecomunicaciones.    

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • David Alexander Galindo Barrera, Universidad Francisco de Paula Santander

    Ingeniero Electrónico egresado de la Universidad Francisco de Paula Santander Cúcuta-Colombia (2024). Se ha destacado por su participación en el desarrollo de su proyecto de pregrado, ponencia internacional y artículos en el Semillero de Investigación en Instrumentación Electrónica (SIINE) y en el Grupo de Investigación y Desarrollo en Electrónica y Telecomunicaciones (GIDET). Actualmente se desempeña como Ingeniero en la empresa Massa Group.

     

  • Sergio Alexander Castro Casadiego, Universidad Francisco de Paula Santander

    Ingeniero Electrónico egresado de la Universidad Francisco de Paula Santander Cúcuta-Colombia (2008), Magister en Ingeniería Electrónica de la Universidad Nacional Experimental del Táchira San Cristóbal-Venezuela (2014), y Doctor en Ciencias de la Educación de la Universidad Simón Bolívar Cúcuta-Colombia (2025). Tiene amplia experiencia como docente de educación media, técnica y universitaria. Actualmente es Docente de la Secretaría de Educación Municipal de Cúcuta y además se desempeña como Docente e Investigador del Departamento de Electricidad y Electrónica, siendo director del Semillero de Investigación en Instrumentación Electrónica de la Universidad Francisco de Paula Santander. Ha participado en grupos de investigación categorizados de la Universidad Francisco de Paula Santander y además es reconocido como Investigador Asociado por el Ministerio de Ciencia, Tecnología e Innovación- MINCIENCIAS. 

  • Karla Cecilia Puerto López, Universidad Francisco de Paula Santander

    Recibió el título de Ingeniera Electrónica en el año 2008 de la Universidad Francisco de Paula Santander en Cúcuta, Colombia. Es Especialista en Servicios y Redes de Telecomunicaciones del año 2010 y de Magister en Ingeniería en Telecomunicaciones en el año 2014, en la Universidad de Buenos Aires, Argentina. Es Doctora en Educación de la Universidad Francisco de Paula Santander del año 2025. Ha participado como investigadora en el Grupo de Investigación y Desarrollo en Electrónica y Telecomunicaciones (GIDET) y en el grupo de Investigación y Desarrollo en Microelectrónica Aplicada y Control (GIDMAC), ambos grupos de la Universidad Francisco de Paula Santander, siendo reconocida como Investigadora Asociada por el Ministerio de Ciencia, Tecnología e Innovación- MINCIENCIAS. Actualmente es Docente de tiempo completo y además directora del Departamento de Electricidad y Electrónica de la Universidad Francisco de Paula Santander. 

  • Dinael Guevara Ibarra, Universidad Francisco de Paula Santander

    Recibió el título de Ingeniero Electricista en el año 1989 de la Universidad Industrial de Santander, Bucaramanga, Colombia. Es Especialista en Teleinformática de la Universidad Distrital Francisco José de Caldas en Bógota, Colombia (2000). Es Magister Scientiarium en Ingeniería de Telecomunicaciones (2006) de la Universidad Nacional Experimental Politécnica “Antonio José de Sucre”, en Barquisimeto, Venezuela y el obtuvo el título de Doctor en Ingeniería (2012) desde la Universidad Pontificia Bolivariana en Medellín, Colombia. Es fundador, investigador y director del Grupo de Investigación y Desarrollo en Electrónica y Telecomunicaciones (GIDET) de la Universidad Francisco de Paula Santander, donde se ha desempeñado como director del plan de estudios del programa de Ingeniería Electrónica y director del Departamento de Electricidad y Electrónica. Actualmente es Docente Titular de tiempo completo del Departamento de Electricidad y Electrónica de la Universidad Francisco de Paula Santander. 

Referencias

[1] “¿Qué es la radiocomunicación? - TeamVOX.” Accessed: Jun. 14, 2024. [Online]. Available: https://teamvox.com/que-es-la-radiocomunicacion/

[2] “Soluciones de Comunicación por Radio - Hytera LATAM.” Accessed: Jun. 14, 2024. [Online]. Available: https://www.hytera.com/la/home.html

[3] “Radio Definido por Software.” Accessed: Jun. 14, 2024. [Online]. Available: https://telecomunicaciones.edu.ec/repositorio/articulos-blog/redes/radio-definido-por-software

[4] “Acerca de Radio GNU.” Accessed: Jun. 14, 2024. [Online]. Available: https://www.gnuradio.org/about/

[5] B. R. G. Machado and A. M. Wyglinski, “Software-Defined Radio : Bridging the Analog – Digital Divide,” 2015.

[6] J. Jagannath, N. Polosky, D. O. Connor, L. N. Theagarajan, and B. Sheaffer, “Artificial Neural Network based Automatic Modulation Classification over a Software Defined Radio Testbed Artificial Neural Network based Automatic Modulation Classification over a Software Defined Radio Testbed,” 2021, doi: 10.36227/techrxiv.16837429.v1.

[7] L. Zhang, J. Qu, and J. Fan, “Topology evolution Based on the complex networks of heterogeneous wireless sensor network,” 2016, doi: 10.1109/ISCID.2016.187.

[8] B. I. Supriyatno, T. Hidayat, A. B. Susksmono, and A. Munir, “Development of Radio Telescope Receiver Based on GNU Radio and USRP.”

[9] 2019 IEEE 5th International Conference on Computer and Communications (ICCC). IEEE.

[10] IEEE Malaysia Section. Industrial Electronics & Industrial Applications Joint Chapter and Institute of Electrical and Electronics Engineers, ISCAIE 2019 : 2019 IEEE Symposium on Computer Applications & Industrial Electronics : 27th-28th April 2019, Kota Kinabalu, Malaysia.

[11] IEEE Electron Devices Society, Institute of Electrical and Electronics Engineers, and Vaigai College of Engineering, Proceeding of the 2018 International Conference on Intelligent Computing and Control Systems (ICICCS) : June 14-15, 2018.

[12] R. Bhoir, R. Thakur, P. Tambe, R. Borase, and S. Pawar, “Design and Implementation of Smart Compost System Using IOT,” in 2020 IEEE International Conference for Innovation in Technology, INOCON 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. doi: 10.1109/INOCON50539.2020.9298219.

[13] R. Külcü and O. Yaldiz, “The composting of agricultural wastes and the new parameter for the assessment of the process,” Ecol Eng, vol. 69, pp. 220–225, 2014, doi: 10.1016/j.ecoleng.2014.03.097.

[14] X. Bai, L. Liu, M. Cao, J. Panneerselvam, Q. Sun, and H. Wang, “Collaborative actuation of wireless sensor and actuator networks for the agriculture industry,” IEEE Access, vol. 5, pp. 13286–13296, Jul. 2017, doi: 10.1109/ACCESS.2017.2725342.

[15] IEEE Staff, 2017 3rd IEEE International Conference on Computer and Communications (ICCC). IEEE, 2017.

[16] A. V. Pedapudi, S. T. Kurapati, G. Narayanan, and D. G. Kurup, “Performance Analysis of Sensor Communications for Agriculture Systems using SDR Platform,” in 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering, ICRAIE 2020 - Proceeding, Institute of Electrical and Electronics Engineers Inc., Dec. 2020. doi: 10.1109/ICRAIE51050.2020.9358312.

[17] IEEE International Conference on Service-Oriented Computing and Applications, I. IEEE International Conference on Control, and K. D. ICCICCT 2014.07.10-11 Kumaracoil, International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2014 10-11 July 2014, Kumaracoil, Thuckalay, Kanyakumari Dist., Tamil Nadu, India.

[18] S. Gupta, R. Devsani, S. Katkar, R. Ingale, P. A. Kulkarni, and M. Wyawhare, “IoT Based Multipurpose Agribot with Field Monitoring System,” in 2020 International Conference on Industry 4.0 Technology, I4Tech 2020, Institute of Electrical and Electronics Engineers Inc., Feb. 2020, pp. 65–69. doi: 10.1109/I4Tech48345.2020.9102637.

[19] Institute of Electrical and Electronics Engineers and Shenyang shi fan da xue, Proceedings of 2020 IEEE International Conference on Power, Intelligent Computing and Systems : ICPICS 2020 : Shenyang, China, July 28-30, 2020.

[20] Institute of Electrical and Electronics Engineers. Madras Section and Institute of Electrical and Electronics Engineers, Proceedings of the 2020 IEEE International Conference on Communication and Signal Processing (ICCSP) : 28th - 30th July 2020, Melmaruvathur, India.

[21] Y. Wang, “Research on construction and management of intelligent agriculture cloud platform,” in Proceedings - 2020 International Conference on Computer Information and Big Data Applications, CIBDA 2020, Institute of Electrical and Electronics Engineers Inc., Apr. 2020, pp. 340–343. doi: 10.1109/CIBDA50819.2020.00083.

[22] B. Nagaraj et al., ICIIECS’15 : DRDO sponsored 2015 IEEE International Conference on Innovations in Information, Embedded and Communication Systems : 19th and 20th March 2015 : proceedings.

[23] Institute of Electrical and Electronics Engineers, 2017 3rd International Conference on Control, Automation and Robotics : ICCAR 2017 : 22 Apr - 24 Apr, 2017, Nagoya, Japan.

[24] R. Agrawal and S. Mohan, “Complete Industrial Solution for Automation in Temperature and Humidity Monitoring using LabVIEW.”

[25] Polibatam (Organization), Institute of Electrical and Electronics Engineers. Indonesia Section. CSS/RAS Joint Chapter, and Institute of Electrical and Electronics Engineers, Proceedings of the 2018 International Conference on Applied Engineering (ICAE) : Batam, Indonesia, October 3-4, 2018.

[26] W. T. Sung, C. W. Sung, and C. Y. Hsiao, “Environment monitoring system based on architecture of IoT by wireless sensor network,” in Proceedings - 2018 International Symposium on Computer, Consumer and Control, IS3C 2018, Institute of Electrical and Electronics Engineers Inc., Jul. 2018, pp. 330–333. doi: 10.1109/IS3C.2018.00090.

[27] P. Du and H. Li, “Design of an Integrated Control System for Multiple Test Instruments Based on LabVIEW,” in Proceedings - 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 904–908. doi: 10.1109/CISP-BMEI51763.2020.9263658.

[28] St. Peter’s College of Engineering and Technology, Institute of Electrical and Electronics Engineers, Council of Scientific & Industrial Research (India), and Indian Council of Medical Research, Proceedings of 2017 Third IEEE International Conference on Sensing, Signal Processing and Security (ICSSS 2017) : May 4th and 5th, 2017 : St. Peter’s College of Engineering and Technology, Avadi, Chennai, Tamil, Nadu, India-600054.

[29] S. H. Park, T. Park, H. D. Park, D. H. Jung, and J. Y. Kim, “Development of Wireless Sensor Node and Controller Complying with Communication Interface Standard for Smart Farming,” Journal of Biosystems Engineering, vol. 44, no. 1, pp. 41–45, Mar. 2019, doi: 10.1007/s42853-019-00001-5.

[30] P. Kumar and S. R. N. Reddy, “Wireless sensor networks: a review of motes, wireless technologies, routing algorithms and static deployment strategies for agriculture applications,” CSI Transactions on ICT, vol. 8, no. 3, pp. 331–345, Sep. 2020, doi: 10.1007/s40012-020-00289-1.

[31] Jāhāṅgīranagara Biśvabidyālaẏa. Department of Computer Science and Engineering, Jāhāṅgīranagara Biśvabidyālaẏa, South Asian University, Institute of Electrical and Electronics Engineers. Bangladesh Section, and Institute of Electrical and Electronics Engineers, 2016 International Workshop on Computational Intelligence : 12-13 December, Department of Computer Science and Engineering, Jahangirnagar University, Dhaka, Bangladesh.

[32] Universitas Telkom, Multimedia University, M. IEEE Systems, and Institute of Electrical and Electronics Engineers, 2019 7th International Conference on Information and Communication Technology (ICoICT) : July 24-26, 2019, Kuala Lumpur, Malaysia.

[33] J. Yang, M. Liu, J. Lu, Y. Miao, M. A. Hossain, and M. F. Alhamid, “Botanical Internet of Things: Toward Smart Indoor Farming by Connecting People, Plant, Data and Clouds,” Mobile Networks and Applications, vol. 23, no. 2, pp. 188–202, Apr. 2018, doi: 10.1007/s11036-017-0930-x.

[34] J. Muslimin, A. L. Asnawi, A. F. Ismail, and A. Z. Jusoh, “SDR-Based Transceiver of Digital Communication System Using USRP and GNU Radio,” in Proceedings - 6th International Conference on Computer and Communication Engineering: Innovative Technologies to Serve Humanity, ICCCE 2016, Institute of Electrical and Electronics Engineers Inc., Dec. 2016, pp. 449–453. doi: 10.1109/ICCCE.2016.100.

[35] M. Sever and B. Tavli, “Use of GNU Radio as a Validation and Visualization Tool in Communications Electronic Support Project,” in 2020 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. doi: 10.1109/SIU49456.2020.9302461.

[36] S. Chuensiri et al., “Implementation of Adaptive Network-Based Fuzzy Inference for Hybrid Ground Source Heat Pump,” IEEE Access, vol. 12, pp. 21052–21069, 2024, doi: 10.1109/ACCESS.2024.3361669.

[37] J. P. Juul, O. Green, and R. H. Jacobsen, “Deployment of Wireless Sensor Networks in Crop Storages,” Wirel Pers Commun, vol. 81, no. 4, pp. 1437–1454, Apr. 2015, doi: 10.1007/s11277-015-2482-3.

[38] S. Roy, R. Dutta, N. Ghosh, and P. Ghosh, “Adaptive motif-based topology control in mobile software defined wireless sensor networks,” in 2021 IEEE 18th Annual Consumer Communications and Networking Conference, CCNC 2021, Institute of Electrical and Electronics Engineers Inc., Jan. 2021. doi: 10.1109/CCNC49032.2021.9369601.

[39] IEEE International Conference on Ubiquitous Wireless Broadband 2015 Montreal, Institute of Electrical and Electronics Engineers, IEEE International Conference on Ubiquitous Wireless Broadband 2015.10.04-07 Montreal, and ICUWB 2015.10.04-07 Montreal, 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB) proceedings : Montreal, Canada, 4-7 October 2015. IEEE, 2015.

[40] “Software Define Wireless Sensor Networks Mangement and Security Challenges a review”.

[41] J. Xu et al., “A Reliable Traceability Model for Grain and Oil Quality Safety Based on Blockchain and Industrial Internet,” Sustainability (Switzerland), vol. 14, no. 22, Nov. 2022, doi: 10.3390/su142215144.

[42] K. Dagnon, M. Pickens, V. Vaidyanathan, and N. D’Souza, “Validation of an Automated Multiunit Composting System,” J Polym Environ, vol. 22, no. 1, pp. 9–16, Mar. 2014, doi: 10.1007/s10924-013-0596-9.

[43] J. S. Sánchez Gómez, A. M. Romero Arias, J. L. Padilla Cochero, and N. Díaz López, “Sistema de monitoreo electrónico para la identificación de las fases del compostaje de los residuos orgánicos en la Universidad El Bosque,” Asociación Colombiana de Facultades de Ingeniería - ACOFI, Sep. 2023, pp. 1–11. doi: 10.26507/paper.3145.

[44] S. Gangopadhyay and A. Zhai, “CGBNet: A Deep Learning Framework for Compost Classification,” IEEE Access, vol. 10, pp. 90068–90078, 2022, doi: 10.1109/ACCESS.2022.3201099.

[45] A. Matiz-Villamil, K. J. Méndez-Carranza, A. F. Pascagaza-Pulido, T. Rendón-Rendón, J. Noriega-Noriega, and A. Pulido-Villamarín, “Trends in the management of organic swine farm waste by composting: A systematic review,” Heliyon, vol. 9, no. 8. Elsevier Ltd, Aug. 01, 2023. doi: 10.1016/j.heliyon.2023.e18208.

[46] A. El Hibaoui, M. Essaaidi, Y. Zaz, International Solar Energy Society, and Institute of Electrical and Electronics Engineers, Proceedings of 2019 7th International Renewable and Sustainable Energy Conference (IRSEC).

[47] T. M. Bandara, W. Mudiyanselage, and M. Raza, “Smart farm and monitoring system for measuring the Environmental condition using wireless sensor network - IOT Technology in farming,” in CITISIA 2020 - IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, Proceedings, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. doi: 10.1109/CITISIA50690.2020.9371830.

[48] Institute of Electrical and Electronics Engineers, 2016 International Conference on Telecommunications and Multimedia (TEMU).

[49] Y. Van Fan, C. T. Lee, J. J. Klemeš, C. P. C. Bong, and W. S. Ho, “Economic assessment system towards sustainable composting quality in the developing countries,” Clean Technol Environ Policy, vol. 18, no. 8, pp. 2479–2491, Dec. 2016, doi: 10.1007/s10098-016-1209-9.

[50] O. Casas et al., “Wireless sensor network for smart composting monitoring and control,” Measurement (Lond), vol. 47, no. 1, pp. 483–495, 2014, doi: 10.1016/j.measurement.2013.09.026.

[51] M. López et al., “Intelligent composting assisted by a wireless sensing network,” Waste Management, vol. 34, no. 4, pp. 738–746, 2014, doi: 10.1016/j.wasman.2013.12.019.

[52] G. Patrizi, A. Bartolini, L. Ciani, V. Gallo, P. Sommella, and M. Carratu, “A Virtual Soil Moisture Sensor for Smart Farming Using Deep Learning,” IEEE Trans Instrum Meas, vol. 71, 2022, doi: 10.1109/TIM.2022.3196446.

[53] 2019 IEEE Conference on Network Softwarization (NetSoft). IEEE, 2019.

[54] M. Pergola et al., “Composting: The way for a sustainable agriculture,” Applied Soil Ecology, vol. 123, pp. 744–750, Feb. 2018, doi: 10.1016/j.apsoil.2017.10.016.

[55] H. Marques, I. Member, B. Borges, P. Ramos, and A. Martins, “Contactless Battery Charger for Composite Humidity and Temperature Wireless Sensors.”

[56] P. Douglas, D. Fecht, and D. Jarvis, “Characterising populations living close to intensive farming and composting facilities in England,” Front Environ Sci Eng, vol. 15, no. 3, Jun. 2021, doi: 10.1007/s11783-020-1332-z.

[57] J. L. Guzmán and B. Joseph, “Web-Based Virtual Lab for Learning Design, Operation, Control, and Optimization of an Anaerobic Digestion Process,” J Sci Educ Technol, vol. 30, no. 3, pp. 319–330, Jun. 2021, doi: 10.1007/s10956-020-09860-6.

[58] J. P. Juul, O. Green, and R. H. Jacobsen, “Deployment of Wireless Sensor Networks in Crop Storages,” Wirel Pers Commun, vol. 81, no. 4, pp. 1437–1454, Apr. 2015, doi: 10.1007/s11277-015-2482-3.

[59] G. D. O’Mahony, P. J. Harris, and C. C. Murphy, “Analyzing using Software Defined Radios as Wireless Sensor Network Inspection and Testing Devices: An Internet of Things Penetration Testing Perspective,” in GIoTS 2020 - Global Internet of Things Summit, Proceedings, Institute of Electrical and Electronics Engineers Inc., Jun. 2020. doi: 10.1109/GIOTS49054.2020.9119606.

[60] I. Vitas, D. Šimunić, and P. Knežević, “Evaluation of Software Defined Radio Systems for Smart Home Environments.”

Descargas

Publicado

2025-07-01

Número

Sección

Artículos

Cómo citar

[1]
“Nuevas tecnologías y aplicaciones del radio definido por software en entornos agrícolas: una revisión del estado del arte”, Entre cienc. ing., vol. 19, no. 37, pp. 79–86, Jul. 2025, doi: 10.31908/19098367.3139.