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Abstract - A conducting fluid is continuously injected or 
ejected through a pair of parallel porous walls and it escapes in 
both directions along the channel. The flow forms a stagnation 
point at the center and the effluence is restricted by a magnetic 
field. A theoretical analysis of steady state solutions of the MHD 
equations in the incompressible case is given as a function 
of three parameters: the Reynolds number Re, the magnetic 
Reynolds number Rm and Alfvenic Mach number MA for some 
of significant asymptotic limits. For highly conducting plasma 
(Rm >> 1) it was found that the magnetic field restrains the 
outflow for MA <1 and drives the escape for MA >1. In motions 
of low conductivity (Rm <<1) the magnetic field contains (and 
can be used for controlling) the effluence.

Keywords - Parallel porous walls; conducting fluids; Injection; 
Ejection.

Resumen - Una conducción de fluido se inyecta de forma 
continua o expulsada a través de un par de paredes porosas 
paralelas y se escapa en ambas direcciones a lo largo del canal. 
El flujo forma un punto de estancamiento en el centro y la 
emanación es restringida por un campo magnético. Un análisis 
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teórico de soluciones de estado estacionario de las ecuaciones 
MHD en el caso incompresible se da como una función de tres 
parámetros: el número de Reynolds Re, el número de Reynolds 
magnético Rm y Alfvenic número de Mach MA para algunos de 
límites asintóticos significativos. Para conducir plasma (Rm >> 
1) se encontró que el campo magnético restringe el flujo de salida 
para MA <1 y acciona el escape para MA> 1. En movimientos 
de baja conductividad (Rm << 1) el campo magnético contiene 
(y se puede utilizar para el control de) la emanación. 

 
Palabras clave - Paredes paralelas porosas; conducción de 
fluidos; inyección; expulsión. 

I.  Introduction

The movement of ordinary fluids that are injected or 
ejected by porous channels has been of considerable 

interest in recent literature on hydrodynamics. The 
bidimensional problem of a viscous and incompressible 
fluid in a porous channel with a stagnation point in the 
center was initially studied by Berman [1] whose work was 
motivated to give a model that explained the separation of 
uranium from U238 to U235 by gaseous diffusion. The uranium 
is previously turned to the gas UF6, which has appropriate 
characteristics for its manipulation. In this pioneering work 
the problem of the stationary case was solved, using similar 
solutions to reduce from the Navier-Stokes equation to a 
differential equation of fourth degree, with a pair of border 
conditions in each wall. Berman found analytical solutions 
for the asymptotic situation of low Reynolds numbers in 
the case of suction in the walls. Later authors have studied 
different physical situations from this problem, Sellars [2], 
Yuang [3], Proudman [4], Shrestha [5], Terril [6], Brady 
and Acrivos [7], Brady [8], Robinson [9], Zaturska et. al. 
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	    and                    .

Besides ,                     just depends on the time. In general the 

electrical field can be described by

therefore it could be found a potential j
 , such that

                                       
   
We will study a model where the lateral walls, which are 
supposed to be distant in the z direction, cannot be charged 
electrically, then the z- component of the electrical field Ez is 
zero. This fact will permit us to see ahead, the use of similar 
solutions for uncoupling the equations (1) and (2). It can be 
supposed as well that those walls are conductive but they 
are in short-circuiting for a lab model (see fig. 1). Finally, 
these walls could be in the infinite, this last case is presented 
for instance in an astrophysic model. From above it can 
be deduced that in a tree-dimensional model the boundary 
conditions in z are related to the  Ez  electrical field.

[10], Watson et al [11], Cox [12], Banks [13, 14] that in 
general has treated, for example the cases of symmetrical, 
asymmetric flows, walls with acceleration, different speeds 
from suction or injection in the walls superior and inferior. 
Taylor et al. [15], solved the three-dimensional problem 
of flows in porous channels, where the bidimensional case 
with cartesian and cylindrical geometries, are obtained like 
particular cases, by the variation of a parameter that gives 
the dimensional character of the problem. Since the case of 
injection is always temporarily stable, Hocking [16] paid 
special attention to the study of the stability in the case of 
suction. Solutions obtained showed that they are unstable 
for a critical Reynolds number Re = 6.0014. For certain 
great values of Re, the flows have a periodic behavior from 
chaotic Re= 12.936 and for Re > 20. 

In this work a conducting fluid which is continuously 
injected or ejected through a pair of parallel porous walls and 
which escapes in both directions along the channel is study. 
A theoretical analysis of the MHD equations steady state 
solutions in the incompressible case is given as a function 
of three parameters: the Reynolds number Re, the magnetic 
Reynolds number Rm and Alfvenic Mach number MA for 
some of significant asymptotic limits.

Basic Equations of the Magnetohydrodynamics 
Problem

The Navier-Stokes and the Ohm law, equations could be 
written in a reduced form as:

						      (1)

						      (2)

In the last equations, the velocity and the magnetic field 
are given by the following equations:

 						         (3)

The bracket 
                                        

defines the Jacobian

f  of  and  functions, additionally                          is the magnetic

diffusion,                       is the z      component of the vorticity ,          

                             is the z  component of the potential vector           
	            which means, the Jz component can be written 
in terms of the  function        like               	         .      The

brackets	                and             represent the convection transport

terms of             and       ,  respectively. Additionally, the 
bracket                   represents the curl z component of the

Lorentz force. We Suppose that there is an invariance of the 
translation in z, this is, for example,

Fig 1. A conductor fluid injected through the walls. The magnetic field 
is represented without interaction between the field and the fluid. 

The equations system (1) and (2) expounded previously, 
admits in general similar solutions of the form:

						      (4)

						      (5)

Where ɳ represents all parameters involved, in this 
case, the viscosity, the magnetic diffusivity, and external 
magnetic field. Replacing the equations (4) and (5) in the 
equations (1) and (2),the following dimensionless equations 
system is obtained in the suction and injection cases of a 
fluid between two parallel and porous plates with an external 
magnetic field:

						           (6)

			             	
						           (7)
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parameters set of the system v0, v0m and B0 which correspond 
to the values in the cinematic and magnetic viscosities and 
in the magnetic fields respectively. Here it is convenient to 
define the following operators:

						      (10)
	
						      (11)
	
						      (12)
	
						      (13)

						      (14)

The boundary condition for the velocity, the 
condition over f, in the case of suction in the walls is

		   and for the injection case

		      . Since that in our numerical calculus we 
have integrated the equations (6) and (7) between the half 
of the channel width (y=0) and in the wall (y=1), we define 
the operators HS and HA which correspond to the cases of 
symmetric solutions (                      ,           for injection (+)
and suction (-)) and antisymmetric
(for injection (+) and suction (-)) respectively. Note that 
if  represents a symmetric flow then this should be an odd 
function so that f (0) = 0, and therefore the origin is always 
a stagnation point.

The boundary conditions for the magnetic field, the 
conditions over p, depend on the walls and flow conductor 
character. Nevertheless the following condition for both 
suction and injection cases, should be generally satisfied:

						      (15)

If the walls are conductors the constant     is adjusted 
depending on the characteristic parameters of the problem. 
For example, in the low viscosity and high conductivity 
regimes        is taken. Since in this case the flow drags 
the magnetic field lines so that they become parallel and 
therefore the magnetic field and the velocity satisfy the same 
boundary condition over the wall. This last condition, is valid 
for all the conductor walls. If the walls are dielectric then the 
magnetic field between them, is supposed to be originated 
by a pair of external coils that generate an external magnetic 
field in the form: 

						      (16)

It means that the function  that represents the magnetic 
field flow (equation (2)) is now given by the expression:

						      (17)

 Re 
is the Reynolds number,  Rm

  is the magnetic Reynolds 
number, H

a
 is the Hartmann number and AM  is the alfvenic 

Mach number. Notice that now 
and ),,,,( Ame MRRtypp = . Given, R

e
 R

m
 and M

a
, the 

system given by the equations (6) and (7) could be solved 
numeric or analytically in the asymptotic situation that we 
will study later. Sometimes, when the shooting technique is 
used in order to solve cases for the equations system given 
previously, the problem is invested and the parameters 
employed to make the calculations are R

e, Rm
 y M

A
. Notice 

that if  p=0 the problem decreases to the pure fluidness case. 
The general problem so expounded is quiet complex from a 
mathematical point of view. We will study the case in which 
a conductor, incompressible and viscous flow, goes in or out 
through a pair of parallel infinite perforated walls with the 
same suction rate or with injection in both walls (separated 
by a distance of 2 0h ). The flow that interacts with a magnetic 
field is basically perpendicular to the walls in the case of 
being conductors. If the walls are dielectric the magnetic 
field can have x and y components in the boundary. This 
magnetic field is modified by the conductor flow movement, 
as it is shown in figure 2.

Fig. 2. Lines speed and the field in the case where it is considered that 
interaction with the magnetic field exists. This case comes when injection 
of flow through the walls exists.

The magnetic field                                     and the speed
                         could be obtained then of the following 

form:
						      (8)

						      (9)

 II. Boundary Conditions

For the case of a fluid that enters or leaves for a pair of 
perforate and parallels walls, in presence of a magnetic field 
the initial conditions, are:                                                      ,
here the temporary part f

1
(t )and,

here p
1
(t) are small interferences of f

0
 y p

0
, that they in turn 

are the solutions of the stationary case obtained from the 
equations (1) and (2). Additionally      is determined by a fixed 

y0
Vy Byy0
Vy By
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Providing that the magnetic field in the walls can take any 
value, the boundary conditions for the magnetic field inside 
the walls that permit the couple with the external magnetic 
field, can be briefly written in the following way:

						      (18)

If Ka =[c,0], the symmetric case of dielectric walls is 
obtained, but if Kα=[0,0], then the walls will be metallic. 
Since in this work we just present the symmetric flow case, 
the condition                     is fixed for the flow and for the 
magnetic field and  for the numerical 
case, what means to take   and   for the 
suction case while for the injection case  y , without varying 
the boundary conditions. Additionally when using the above 
convention, the time changes of sign in the injection case. It 
is clear that the negative time and negative Reynolds number 
definitions do not have any physical interpretation, it is 
just a mathematic artifice used in this kind of problems in 
order to facilitate the numerical calculus. In some cases it is 
convenient to use an integration of the equation (6). For the 
stationary case the equations system given in the equations 
(6) and (7) is described by the following equations system:

    						    
(19)

				        		
(20)

The constant C of integration is determined starting 
from the values in the boundary, that in stationary case of 
conductor walls and of injection of flowing in the walls, C is 
given by the equation:

						    

(21)

This integration constant C, on the other hand is directly 
related with the pressures gradient according to the x axis 
through the expression: 

	 		    			   (22)

What is to say the pressures gradient depends not only on 
the x magnetic field component but on the position according 
to the x axes.

Asymptotic Approximations Re <<1 and Rm <<1.

In the injection case with low Reynolds numbers, the 
magnetic field lines are now rigid just by a small perturbation 
which is caused by the flow movement, this one at the same 
time is very viscous for this limit (Re<<1). Such magnetic 
field can be written in the following way:

10 ppp += , 				    (23)

where  p0 is the field value that we assumed as constant and 
by simplification reasons can be taken the same as the unit. 
On the other hand, p1 is a small perturbation which as it was 
previously said, it is caused by the fluid movement. Thus the 
equations (19) and (20) previously linearized, can be written 
in the following way: (see fig. 2),

		                 			    (24)

				                    	  (25)

In the expressions above the second order terms have 
been suppressed, that means, we have taken the first two 
terms of the expansion p = 1+Rmp1+....

On the other side, the term 1/Rm is very big, but p1
” is 

very small, so the equation (25) is valid. When replacing the 
equation (24) the following differential equation is obtained:

						      (26)

This equation at the same time has as solution (with 
p0=1):

						    
(27)

and consequently replacing the equation (25) the 
following  expression for p1  is obtained:

   						        
(28)

Here, Ha  is the Hartmann number defined previously. 
Also the integration constant D  is calculated keeping in 
mind that the wall interference should be null, and then it 
remains defined like:

			      			    (29)

Figure 3 shows the velocity component behavior 
according to the x axis direction for different values of the 
Hartmann number. Note that when the Hartmann number 
grows , that means, the magnetic field becomes stronger 
(MA<<1), the fluid behavior is similar to the Hartmann flow 
where the velocity is constant at the center of the channel and 
it strongly varies when is near the walls until diminishing to 
zero exactly over the wall. 
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Fig. 3. Speed profile and their behavior for several values of the 
Hartmann number. It is observed that when Ha>>1 appears a limit layer 
in the wall.

On the other hand, taking into account the boundary 
condition in the wall f(y=1) =1, it is found that the constant 
C is related to the other constants through the following 
formula:

						      (30)

Figure 4 shows the relation between the constants C, Ha 
and Re given in the equation (30). Additionally if Ha >> 1 
(for example, MA<< (ReRm) (1/2) <<1), it implies that 

C H Ra e� 2 / , so that it can be deduced that it should exist 
a strong gradient that moves the fluid outside. The magnetic 
field roughness controls then the fluid movement, avoiding 
it to leave. On the other hand if Ha << 1, the magnetic field 
lines are “less rigid “ and in this case the condition CRe �3 
is satisfied, thus the viscous effects are now the ones that 
control the fluid movement.

On the other hand, figure 5 shows the current lines and 
the magnetic field obtained by the basic equations numerical 
integration. Note that the rigidity of the magnetic field lines, 
as well as the component Bx in the wall are not annulled. In 
this graphic it is difficult to see, due to the scale that it was 
built with.

Figure 6 illustrates the speed and field profiles, where the 
appearance of the limit layer before mentioned is shown. 
Similarly, how it was made in the previous asymptotic case, 
the solutions obtained upon being integrated numerically the 
equations (19) and (20) for the Runge-Kutta method, for the 

values Re = 01. , Rm = 01. , MA = 0 3.  and C = 313254.
, they coincide with the obtained through the equation (30), 
where the value that is obtained is C = 313326. .  So it is 
shown again a good agreement between the asymptotic results 
and found numerals upon integrating the complete equations 
system. On the other hand, in the numeric integration that 
was made for several Reynolds number values, they do not 
show appreciable variations, for both profiles of the speed 
and the magnetic field, in the range 0.1£ Re £ 30.

Fig. 4. Relation between C, Ha and Re  in the asymptotic case of 
Rm<<1 and Re<<1.

Fig. 5. For the asymptotic case, Rm<<1 y Re<<1, the field lines for the 
speed and the magnetic field is shown. In this case Rm=Re=0.1, MA=0.3 
and C=31.3254.

Fig. 6. For the case Rm<<1 and Re<<1, the profile of the speed and 
the magnetic field is shown. It is observed it that the field does is not null 
in the wall.
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Solution with limit layer in the wall for Re>>1, 
Rm>>1 and MA<<1.

For the case given in the equations. (19) and (20) when 

Re>>1, Rm>>1 and if M A
2 1<< , the equations to solve 

now are:

						      (31)

						      (32)

The equation (32) could be also written in the following 
form:

						      (33)

The equation (31) indicates essentially that the magnetic 
field is equilibrated with the pressure, and that the viscous 
and inertial effects are despicable, which leads to that the 
Navier–Stokes equation could be written in the following 
form:

						      (34)

The solution to the equation (31) is:

						      (35)

Thus, with the boundary conditions   and
Bx ( )± =1 0, and with p given by the equation (35), it is 
obtained:

						      (36)

Nevertheless,  which shows that the walls 
are dielectric materials (or they are coated by a thin dielectric 
layer). Therefore for this regime there is no a solution for 
the conductor walls case, unless a limit layer in the wall is 
developed. The flow velocity consistent with the solution 
given in the equation (36) is described by the following 
relation:

						      (37)

Which in fact solves the equation (33) and additionally 
satisfies the stagnation point condition . In the 
expression above the Gudermannian function gd y( ) , 
represents the integral:

						      (38)

As in the walls, in the injection case,  

k should be satisfied, this should be determined by the 
transcendental equation roots:

	
 
					     (39)

						      (40)

Then from the condition , it is observed that 
a viscous limit layer in the walls is always generated because 
the condition below is not satisfied,

						      (41)

Suction case when R
e
<<1 and R

m
<<1.

In this case, the solutions are similar to those obtained 
for the injection case, just that now the boundary conditions 
change, the solution then for f is given by the expression:

    						      (42)

Where it has been assumed that the magnetic field can 
be also written like p=p0+p1, so the perturbation p1 for the 
magnetic field can be written in the following way (here we 
have also assumed that p0=1):

						      (43)

As the perturbation has to be annulled in the wall, the 
constant D is then given by the expression:

						      (44)

From above and being consistent with the equation (30), 
the integration constant C also changes sign:

						      (45)

On the other side, figure 7 shows the current and magnetic 
field lines obtained from the numerical integration of the 
basic equations Rm=0.1, MA=10 and Re=0.1. Note that the 
magnetic field lines continue rigid but this is due to the fluid 
suction by the walls, these lines curvatures are opposite to 
the ones of the injection case.
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Fig. 7.  Contour lines of the speed and the magnetic field for Rm=0.1, 
MA=10 and Re=0.1. The magnetic lines flexion is contrary to those obtained 
for the injection case.

Additionally for the same values above of MA=10, and 
Rm=0.1, the velocity and magnetic field profiles in this 
asymptotic regime, are shown in fig. 8.  In this figure the Re 
values are shown, varying between 0.3 and 27.3 and with 
an increase of 3. As it can be seen, as the flow becomes less 
viscous, the magnetic field effect becomes more notorious, 
doing that the fluid velocity existing in the center of the 
channel diminishes appreciably and as consequence, flows 
with much more velocity appears near the walls. As this 
one is nearer the walls, the velocity change is going to be 
bigger, for example in y=0.96, the vx velocity varies from 0.4 
to 0.8, when the Reynolds number changes from 0.1 to 30. 
Nevertheless, the x magnetic field component  increases its 
value in the wall showing in this way a limit layer apparition, 
in the conductor walls case, or the walls could be dielectric 
(at least if they are coated by a thin dielectric layer). The 
above is reasonable if it is taken into account that the fluid 
has to come from a deposit placed far from the center of the 
channel and it has to come out by the walls, but due to the 
strong magnetic field and as the fluid becomes less viscous, 
this one flows less by the center of the channel. In this point 
it is convenient to clarify that in our numerical calculus we 
have omitted the condition p’ equals zero in the wall and this 
value is let to adjust it freely to the other problem conditions.

On the other side figure 9 shows the vorticity values 
in the wall in function of the Re Reynolds number, when 
Rm=0.1 and MA=10 is taken. It is seen that in this figure, 
the vorticity varies very slowly for the injection case and it 
considerably increases in the suction case as the Reynolds 
number grows, showing in this way  a limit layer apparition 
for the case Re>>1. Additionally if the magnetic field effect 
is compared regarding to the pure fluid case, where it is seen 
that in injection, the vorticity in the wall slightly increases 
while than for suction case, such vorticity considerably 
diminishes as the Reynolds number grows. It is important to 
say that when the Reynolds number is null then f ’’ =2.984 
with or without magnetic field. 

Fig. 8. Speed profile behavior and magnetic field as a function of the 
Reynolds number Re for Rm=0.1, and MA=10. 

Fig. 9. Graphic of the vorticity in the wall as a function of the Reynolds 
number. It is observed that for the suction case the effect of the magnetic 
field makes that the vorticity in the wall disappears.

III. Conclusions

A theoretical analysis of the steady state solutions of 
MHD equations in the incompressible case is given as a 
function of the Reynolds number Re, the magnetic Reynolds 
number Rm and Alfvenic Mach number MA for some of 
significant asymptotic limits has been used for a conducting 
fluid which is continuously injected or ejected through a 
pair of parallel porous walls and escapes in both directions 
along the channel. When the fluid is symmetric, the velocity 
is represented by a symmetric function and the center of the 
channel is a stagnation point. When Re<<1 and Ma<<1, the 
magnetic field lines are a little curved towards the center of 
the cannel, in the suction case and moving away of the center 
in the injection case. The magnetic field controls roughly 
the fluid movement, avoiding it to leave. On the other hand 
if Ha << 1, the magnetic field lines are “less rigid “ and 
the viscous effects are now the ones that control the fluid 
movement and appears a limit layer in the wall.

When Ha>>1, the fluid velocity remains almost constant 
in the center of the channel and it has strong variations close 
to the walls until diminishing to zero exactly over the wall. 

For fixes values of MA and Rm when Re increases as the 
flow becomes less viscous, the magnetic field effect becomes 
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more notorious, doing that the exit velocity of the fluid in the 
channel center diminishes appreciably and as consequence, it 
flows with more velocity near the walls. The x magnetic field 
component increases its value in close to the wall showing in 
this way a limit layer apparition, in the conductor walls case.
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