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        1Abstract— Elastic wave modeling presents a challenge to 

implement since it is a computationally costly procedure. 

Nowadays, due to GPU increased power jointly with development 

in HPC computation, it is possible to execute elastic modeling 

with better execution times and memory use. This study 

evaluates the performance of 2 strategies for implementing 

elastic modeling using different kernel launching layouts, CPML 

memory allocation strategies, and wavefield storage 

management. The performance measures show that the 

algorithm, which includes 2D kernel launching layout, CPML 

reduced memory strategy, and GPU global memory storage to 

save wavefield cube peaks up to 88.4% better execution time and 

uses 13.3 times less memory to obtain the same elastic modeling 

results. There is also an increasing trend of enhancement in 

execution times and memory savings when working with models 

of bigger sizes with this strategy. 

      Keywords— CPML, CUDA, Elastic wave modeling, GPU, 

HPC. 

      

     Resumen— El modelado de onda elástico presenta un reto de 

implementación debido a que es un procedimiento 
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computacionalmente costoso. En la actualidad, debido al 

incremento en la potencia en GPU junto con el desarrollo de la 

computación HPC, es posible ejecutar modelado elástico con 

mejores tiempos de ejecución y uso de memoria. Este estudio 

evalúa el desempeño de 2 estrategias para implementar modelado 

elástico usando diferentes diseños para ejecución de kernel, 

estrategias de asignación de memoria para el cálculo de CPML y 

administración del almacenamiento del campo de onda. Las 

mediciones de desempeño muestran que el algoritmo que incluye 

diseño de ejecución de kernel 2D, la estrategia de memoria 

reducida CPML y el almacenamiento en memoria global de GPU 

del campo de onda alcanza un máximo de 88.4% mejor tiempo 

de ejecución y utiliza un 13.3 veces menos memoria para obtener 

los mismos resultados de modelado elástico. Existe también una 

creciente tendencia de mejora de tiempo de ejecución y ahorro de 

memoria cuando se trabaja con modelos de tamaños más grandes 

con esta estrategia. 

     Palabras clave— CPML, CUDA, Modelado de onda elástico, 

GPU, HPC. 

 

I. INTRODUCTION 

 

EISMIC imaging as part of exploration seismology is 

focused on building physical properties images to gain 

better insights of earth subsurface; it is founded on how 

seismic waves can collect information of those properties 

while traveling into determined medium, and this feature is 

greatly exploited in several imaging reconstruction methods 

[1], [2]  

and its applications [3]. Due to the aforementioned, simulation 

of wave propagation has become a necessity; however, 

implementation of numerical modeling is widely known to be 

a costly computational method mainly because of the amount 

of information to process; furthermore, this cost is increased if 

complex subsurface models are considered as it is the case of 

the elastic model. 

Due to the high consumption of computing resources, the 

implementation of numerical elastic modeling is still a 

challenge to deal with in terms of computational performance. 

Nevertheless, development in graphical processing units 

(GPU) [4] and the emergence of new programming paradigms 

S 

mailto:anderson2198151@correo.uis.edu.co


53 
 

   

                                                                                                                                       Entre Ciencia e Ingeniería, vol. 14, no. 28, pp.52-58, julio-diciembre, 2020.  

as heterogeneous computing and High-Performance 

Computing (HPC) [5], [6] have let to tackle this problem by 

reducing time elapse, memory consumption, and other 

metrics; even though the necessity of improving performance 

is still present. 

Based on the previously mentioned, finding new strategies 

to implement numerical elastic modeling, which explores new 

programming techniques, technological developments, and 

hardware equipment, is highly appreciated. This study 

presents a comparison of two elastic wave modeling 

algorithms running in GPU, which exploit three different 

features of hardware programming such as kernel launching 

layout, CPML memory allocation management, and CPU-

GPU memory transference. In the end, an evaluation between 

both algorithms is performed using metrics like execution time 

and memory consumption to determine which one has better 

performance. 

 

II. METHODS 

 

A. Elastic wave modeling 

Numerical wave modeling is considered a powerful tool for 

simulating how seismic waves travel over different subsurface 

layers in the earth. Elastic wave modeling considers that the 

earth could be modeled by three parameters named λ, μ, and ρ; 

those parameters are related to each other by elastic wave 

propagation set of equations presented by Virieux in the P-Sv 

form [7] in equations Eq (1), Eq (2), Eq (3), Eq (4), Eq (5). 

 

                       (1) 

             (2) 

        (3) 

        (4) 

             (5) 

 

Where x and z are coordinates on the plane, vx and vz are 

velocity components, σxx, σxz, and σzz are the stresses, and 

finally, φ correspond to the seismic source which generates the 

wave to be propagated. Simulation of the source is performed 

commonly using a Ricker wavelet given by the expression Eq 

(6). 

 

         (6) 

 

B. CPML implementation 

When implementing numerical modeling, an undesired 

behavior of wave reflection is found at the boundaries of the 

model. To avoid this issue is necessary to establish some 

energy-absorbing artificial zones near the boundaries and 

prevent reflections from appearing.       

There are several methods to perform this task; among 

them, Convolutional Perfectly Matched Layers (CPML) [8] is 

widely used because it has proved to be very effective in 

reducing energy from seismic waves compared with other 

classic options. Basically, CPML method adds auxiliary 

variables to the modeling expressions set presented, as shown 

in equations Eq (7), Eq (8), Eq (9), Eq (10), and Eq (11). 

 

                        (7) 

                     (8) 

  

                                    (9) 

  

                               (10) 

                   (11) 

 

Those auxiliary variables are updated following 

expressions in Eq (12) and Eq (13) 

                       (12) 

                       (13) 

 

 Where i and k are x or z coordinates depending on which 

variable is working, a and b represent attenuation coefficients 

given by the method. 

 

C. Discretization 

 There are several numerical methods for solving the 

propagation equations; among them, finite differences (FD) 

are widely used because of their easiness of implementation. 

A decision to use the second order in time and fourth order in 

space option was made since it allows to achieve an adequate 

balance for numerical efficiency and small truncation error. 

Equations Eq (14), Eq (15), and Eq (16) represent 

discretization expressions for differential operators, which are 

applied over propagation equations. 

 

                       (14) 

 

                               (15) 

  

                               (16) 

 The discretization procedure generates a grid distribution of 

the model where all physical dimensions are adapted into 

memory spaces that will contain information related to elastic 

parameters; in this grid, the length and depth dimensions are 

turned into memory locations Nx × Nz depending on step sizes 

Δx and Δz; it is common for avoiding anisotropic effects in 

modeling to choose Δx = Δz = Δh; discretization result is 

shown in Fig. 1a. To properly implement elastic modeling is 

necessary to use a staggered-grid scheme [9] since velocity 

fields update depend on stress fields located in other position 

as shown in Fig. 1b 
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Fig. 1.  Discretization result a) grid schematization of model, b) staggered-

grid scheme for elastic wave modeling implemented. 

 

 
 

 

Fig. 2.  Threads/Blocks layout for Kernel execution: a) 1D layout, b) 2D 

layout. 

 

D. Thread/Block launching layout on GPU for elastic wave 

modeling 

 Nvidia Graphic Processing Units (GPU) contains Streaming 

Multiprocessors (SM) as the main component for launching 

Threads and groups of threads known as Blocks, SM 

schedules necessary resources to run Kernels containing the 

code to be parallelized through the application of 

Threads/Blocks layouts [6], [10]; in the case of elastic wave 

modeling the parallel code comprise the propagation equations 

already presented. Once the grid from discretization is created 

is possible to allocate GPU memory (that could be seen as a 

matrix) and design launching layouts to properly run kernels 

and implement modeling. 

 When implementing a specific layout over a matrix, usually 

the first approach considers using one thread to perform 

calculations per every memory space allocated since is the 

simplest and easiest option; this distribution leads to a 1D 

layout where there is one big block containing all threads 

processing completely the memory space giving a total 

number of threads per block of Nx × Nz.    Even though the 

mentioned 1D layout is the first option, it is not a practical 

implementation since GPU hardware architecture limits block 

sizes to contain a maximum of 1024 threads per block, which 

directly limits the model size to be processed with this layout. 

 Another design considers the allocation of threads to 

correspond with Nx memory spaces, and the number of blocks 

will be bound to Nz value, which represents the rows in a 

matrix configuration; this configuration still keeps the 1D 

fashion introduced in the previous example, but in this case, 

the number of blocks utilized is incremented, this design is 

presented in Fig. 2a. This layout improves over the previous, 

allowing to work with bigger size models but still is limited 

for block size limit since, in this case, a row with more than 

1024 components could not be adequately processed. 

      In addition to previously mentioned of resource allocation 

in Nvidia hardware when launching layouts, it is important to 

mention that GPU architecture considers groups of 32 threads 

internally as a structure called warp; when launching a Kernel 

all threads allocated in the selected layout are divided to adjust 

them into the warp size and later some of those warps are 

launched concurrently.  

    The number of warps available to run simultaneously 

depends on the distribution of registers and shared memory 

made when one layout is established; however, this resource 

scheduling is not directly controlled by the programmer 

because it is performed automatically by GPU. Due to this 

lack of control by the programmer, the appropriate layout 

design is important for better use of GPU resources, but there 

are no specific instructions to follow when designing 

launching layouts. Therefore, it becomes an empiric procedure 

highly depending on the application and hardware availability. 

The number of warps available to run simultaneously 

depends on the distribution of registers and shared memory 

made when one layout is established,  however, this resource 

scheduling is not directly controlled by the programmer 

because it is performed automatically by GPU. Due to this 

lack of control by the programmer, the appropriate layout 

design is important for better use of GPU resources, but there 

are no specific instructions to follow when designing 

launching layouts. Therefore, it becomes an empiric procedure 

highly depending on the application and hardware availability. 

 Despite the aforementioned, Nvidia has given some 

suggestions [11] that could help in layout design; among them, 

they recommend to keep the number of threads per block a 

multiple of warp size, avoidance of small block sizes, and 

carry the number of blocks to a much greater number than 

SMs. By taking those recommendations, it is possible to 

propose a new layout as depicted in Fig. 2b 

 This distribution is achieved by dividing the discretization 

matrix into smaller 2D matrixes of the specific size to cover 

the space of the bigger, those smaller matrixes will correspond 

to the blocks in the layout, and each of these blocks will have 

a 2D thread distribution internally. In this way, it is possible to 

work with a greater quantity of blocks while keeping threads 

per block as multiple of warp size; this layout also lets dealing 

with bigger model sizes easily with no major changes.  

There are many possibilities for selecting a 2D layout 

suitable for a determined model, a useful suggestion given by 

Nvidia best practices guidelines [11] would be to execute 

kernels based on a block size of 128 or 256 threads.  

 

E. Common and reduced memory CPML memory allocation 

strategies 

 When implementing numerical modeling is crucial the 

definition of absorbing zones for CPML processing; those 

areas of fixed thickness and length are depicted in Fig. 3a. In 

the image is clearly differentiated two big areas named 
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Regular and CPML zones, in the first, seismic waves travel 

unaltered while in the latter wave energy is reduced as you go 

deeper in that area. 

 

 
Fig. 3.  CPML zones distribution and memory allocation: a) common CPML 

allocation strategy, b) CPML reduced memory strategy 

 

Each CPML zone has a specific thickness Lx or Lz that 

extends to cover fully the corresponding dimension Nz or Nx; 

when implementing over GPU those zones must have their 

own memory space, apart from that used for updating velocity 

and stress fields, where specific CPML calculations are 

performed.  

It is common to find CPML implementations in elastic 

wave modeling that allocate memory spaces of Nx × Nz bytes 

looking to keep the easiness in code programming but 

sacrificing valuable GPU memory resources. 

When using a common scheme, the amount of GPU 

resources invested in operations is greater since on every 

iteration a CPML kernel is executed, it covers completely 

(colored in Fig. 3a) the model memory space allocated 

including regular zone where is supposed not to be performed 

any CPML instruction. However, indexing memory locations, 

jumping over indexes, and internal instructions come about, 

which lead to GPU memory and processing threads to be 

misused, in addition, this inefficient behavior could be 

worsened if bigger size models are considered. 

Another alternative to deal with CPML processing 

considers 5 CPML zones with reduced memory allocation to 

keep better control on memory resources and code execution. 

In addition, Kernels for CPML operations avoid accessing the 

regular zone, as shown in Fig. 3b.  

Unlike the common implementation, the new proposed 

distribution considers 2 independent memory allocation zones 

of size Lx × (Nz - Lz) bytes, another 2 of (Lx × Lz) bytes, finally, 

1 area of (Nx - 2Lx) × Lz bytes; using this scheme assures that 

total memory used in GPU decreases even in cases where 

model sizes are bigger since allocations formulas only rely on 

1 dimension from the model while maintaining constant the 

other which in most cases is a low value Lx or Lz. 

It is important to mention that the amount of GPU resources 

saved in the new scheme decrease when model size 

dimensions are diminished, leading at some point to a virtual 

match in performance for both implementations of CPML 

processing, however in a practical application of elastic 

modeling where is common finding survey areas covering 

several kilometers of length and depth this strategy could be 

useful for more efficient resources management in the GPU. 

 

F. CPU-GPU memory management for wavefield cube 

storage 

 According to Nvidia Best practices guidelines [11], GPU 

memory optimization is the key area to develop when 

algorithm performance is looked for; this is particularly 

applied in elastic wave modeling where high-performance 

levels are expected, especially in execution time and memory 

consumption because this method is usually used as the first 

stage in more complex procedures as inversion [2], [12] and 

migration [13]. 

 Programming over GPU involves the implementation of 

heterogeneous computing [5] paradigm was basically a CPU 

act as the controller for execution flow of the program and 

GPU perform necessary heavyweight operations; each 

hardware device has its own memory space and one algorithm 

running under this paradigm necessarily will share 

information between those spaces for proper execution. 

 Nvidia GPU architecture based its kernel execution 

procedure over a memory hierarchy, which includes several 

memory types; among them, the registers, shared and global 

spaces are worth to be considered since they are the most 

commonly used in general applications. Registers and shared 

memory are the fastest memory in GPU, but those resources 

are limited to some Kilobytes, whereas global memory 

(VRAM) is slower, but there are much more available for use, 

which makes it ideal for dealing with big size wavefield cubes 

from modeling. 

 When executing elastic wave modeling is important to save 

velocity and stress fields updated and later perform the 

creation of a wavefield cube with those fields. To achieve that, 

Fig. 4 presents one approach where GPU updates one 

wavefield and transfers it to CPU system memory on every 

iteration. In this approach, elastic modeling is performed by 

executing Kernels that update wavefield iteratively; once the 

field is updated, a data transference carries that field from 

GPU global memory to CPU over PCI-e bus; when the 

wavefield reaches the system memory, it is saved, and 

execution of next iteration for wavefield update in GPU is 

allowed. 

The main drawback in this strategy is associated with the 

reduced bandwidth available in the PCI-e x16 channel giving 

a maximum of 16GB/s whereas the VRAM-GPU bandwidth 

could peak a maximum of 128GB/s (in a Nvidia Turing Gtx 

1650 card). In addition to bandwidth, the overhead due to 

GPU-CPU transfers could impact the execution time of wave 

modeling. 

Another strategy for wavefield cube storage is depicted in 

Fig. 5; in this case, the GPU updates the wavefield, but this 

time is kept in global memory and saved on it, creating the 

cube; once the propagation is finished, a full cube transference 

is performed to CPU. This strategy overcomes most 

disadvantages of the previous scheme by exploiting the higher 

bandwidth on GPU transfers to speed up the execution of 

kernels and construction of propagation cube; likewise, it 

performs only one big transfer between GPU-CPU memory 

spaces which could reduce impact in execution time due to 

overhead. 
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Fig. 4.  Wavefield cube saved in CPU system memory (RAM) every iteration 

GPU updates the wavefield. 

 

  

 
Fig. 5.  Wavefield cube saved in GPU global memory (VRAM) every 

iteration GPU updates the wavefield. 

 

 
 

Fig. 6.  Flowchart for implementation of elastic modeling in a heterogeneous 

system highlighting specific locations where both strategies tested differ. 

 

 

III. RESULTS 

 

Proposed tests intent to quantify the impact of GPU 

launching layout schemes, GPU memory management, and 

data transference when an elastic modeling algorithm is 

executed. Two different algorithms named Algorithm 1 and 

Algorithm 2 were developed to execute elastic modeling; the 

flowchart in Fig. 6 depicts the general steps included in the 

programming, differences in execution come about when 

choosing CPML memory scheme (number 1), thread/block 

layout (number 2) and storage of wavefield cube (number 3). 

Algorithm 1 implements a 2D thread/block layout for 

launching GPU Kernels, it also uses the CPML reduced 

memory allocation strategy, and it manages wavefield creation 

of vx field in VRAM in the GPU, on the other side; Algorithm 

2 considers a 2D thread/block layout initially and later is 

changed to 1D layout, it includes common CPML memory 

allocation and wavefield construction for vx field is performed 

using RAM memory of the CPU. 

 Wave propagation implemented uses 2nd order in time and 

4th in space finite differences option, space steps of Δx = Δz = 

5m and a time step of Δt = 1ms, an isotropic and homogeneous 

medium with two planar layers with velocities Vp = 3000 m/s 

and Vp = 1500 m/s respectively, the two layers shared other 

parameters as Vs = 1730 m/s, ρ = 2500 Kg/m3; the source is 

simulated by Ricker wavelet with a central frequency of 15Hz. 

Hardware specifications include a standalone station with a 

CPU Ryzen 5 3550H, 8GB of RAM; it contains a GPU GTX 

1650 from Nvidia with 4GB of Video RAM; the system runs 

under Debian OS, and the language used for programming is 

CUDA C. 

Fig. 7 shows four snapshots of elastic wave modeling 

implemented over an area of 2560 m × 1280 m, which 

corresponds to a wavefield of 512 × 256 points with selected 

discretization. 

 

 
Fig. 7.  Elastic wave modeling snapshots in isotropic medium with two layers. 

a) t = 0.25 s, b) t = 0.4 s, c) t = 0.7 s, d) t = 0.95 s. 

 

Table I summarizes the results for execution times of each 

algorithm implemented (Alg 1 and Alg 2) in three tests where 

elastic modeling was performed at three simulations times 

using three different model grids. In this case, both codes use 

2D layout in order to isolate the impact of memory 

management and data transference from Kernel launching 

scheme. Measurements show that Algorithm 1 improves 

execution time over algorithm 2, ranging from a minimum of 

8.9% to 18.1%; there is also a continuous enhancement in 

execution time when rising both simulation time and model 

size; however, a specially pronounced improvement trend is 

detected when model size is incremented. 
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TABLE I 

EXECUTION TIMES FOR ALGORITHMS 1 AND 2 CONSIDERING 3 DIFFERENT 

MODEL SIZES AND 3 SIMULATION TIMES, BOTH ALGORITHMS USE 2D LAYOUT 

 

Simulation time (s) 
Model size (points) 

256 × 256 512 × 256 512 × 512 

 

tsim = 1 s 

Alg 1 (s) 1.01 1.48 2.25 

Alg 2 (s) 1.10 1.64 2.56 

Diff (%) 8.9 10.8 13.7 

 

tsim = 1.5 s 

Alg 1 (s) 1.37 2.00 3.24 

Alg 2 (s) 1.50 2.30 3.72 

Diff (%) 9.4 15.0 14.8 

 

tsim = 2 s 

 

Alg 1 (s) 1.69 2.57 4.14 

Alg 2 (s) 1.86 2.98 4.89 

Diff (%) 10.0 15.9 18.1 

 

Table II collects the same information as in table I, and 

similar tests were performed; however, in this case, algorithm 

2 implements a 1D layout. The idea at this point is to measure 

execution times in codes which use not only different CPML 

memory management strategy but also different launching 

schemes. Results show vast gains in time of algorithm 1 over 

2 varying from 42.5% climbing to 88.4%; likewise, there is an 

improvement trend going upwards with increments in 

simulation time and model size. It is important to mention that 

major gains in execution time were obtained with bigger 

model sizes tested according to data from both tables I and II. 

 
TABLE II 

EXECUTION TIMES FOR ALGORITHMS 1 AND 2 CONSIDERING 3 DIFFERENT 

MODEL SIZES AND 3 SIMULATION TIMES, ALGORITHM 1 IMPLEMENTS 2D 

LAYOUT WHEREAS ALGORITHM 2 IMPLEMENTS 1D LAYOUT 

 

Simulation time (s) 
Model size (points) 

256 × 256 512 × 256 512 × 512 

 

tsim = 1 s 

Alg 1 (s) 1.01 1.48 2.25 

Alg 2 (s) 1.44 2.22 4.04 

Diff (%) 42.5 50.0 79.5 

 

tsim = 1.5 s 

Alg 1 (s) 1.37 2.00 3.24 

Alg 2 (s) 2.01 3.17 5.83 

Diff (%) 46.7 58.5 79.9 

 

tsim = 2 s 

 

Alg 1 (s) 1.69 2.57 4.14 

Alg 2 (s) 2.52 4.29 7.83 

Diff (%) 49.1 66.9 88.4 

 
TABLE III 

VRAM USE FOR ALGORITHM 1 AND 2 CONSIDERING 5 DIFFERENT MODEL SIZES 

AND A SIMULATION TIME OF 1.5 S 

Model size 

(points) 

tsim = 1.5 s 

Alg1 

(MB) 

Alg2 

(MB) 

Diff 

(MB) 

Model 

Size (MB) 

Proportion/ 

Model size 

256 × 256 435 437 2 0.250 8.0 

512 × 256 815 819 4 0.500 8.0 

512 × 512 1577 1583 6 1.000 6.0 

768 × 512 2345 2361 16 1.500 10.6 

768 × 768 3515 3545 30 2.250 13.3 

 

 Table III includes data related to GPU memory used for 

each algorithm over different model sizes; the Diff column 

shows how much more memory algorithm 2 used compared 

with algorithm 1. This value ranges from 2 to 30MB. Column 

Proportion/model size presents how many times additional 

memory used in algorithm 2 is above the memory necessary 

for saving a model in GPU. Figures on those columns allow us 

to identify a rising trend in memory consumption of algorithm 

2 over 1 due to the strong relation between memory used and 

model dimensions Nx - Nz for CPML calculation in algorithm 

2. This relation is reduced when implementing CPML reduced 

memory strategy and thus, the impact on the memory used. 

 

 

IV. CONCLUSIONS 

The results show that one algorithm using only CPML 

reduced memory strategy together with wavefield cube 

creation in GPU improves execution time by a maximum of 

18.1% in tests. There also exists a continuous enhancement 

trend with model size increments and higher times of 

simulation. If a 2D launching layout is added to the strategy, 

the figures are increased, ranging from a minimum of 42.5% 

to a peak of 88.4%. In all cases, major gains were obtained 

when working with the bigger model sizes for all times of 

simulation. From data, it is noticeable the tremendous 

influence that Kernel launching layout has over execution time 

compared with CPML memory management; however, the 

combined effect is outstanding. 

Bigger memory gains for algorithm 1 over 2 were found 

when working with bigger model sizes, reaching a maximum 

of 30MB in tests, which make something close to 1% of 

saving compared to GPU total memory used. However, if 

compared with the memory consumption of the model, which 

is more adequate since the majority of the memory used in the 

GPU is associated with the wavefield cube storage, it is 

possible to say that the common memory management 

strategy took 13.3 times more memory than CPML reduced 

memory strategy when executing wave modeling; also, it can 

be identified a continuous increasing trend in memory 

consumption when model sizes rise up. 
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