
52

Entre Ciencia e Ingeniería, vol. 14, no. 28, julio-diciembre de 2020, páginas 52-58. DOI: https://doi.org/ 10.31908/19098367.2016.

ISSN 1909-8367 (Impreso), ISSN 2539-4169 (En línea)

Computational strategies for implementation of 2D elastic wave

modeling in GPU1

Estrategias computacionales para la implementación de modelado

elástico 2D sobre GPU

A. Páez, I. J. Sánchez y A. B. Ramírez

Recibido: noviembre 25 de 2020 – Aceptado: diciembre 27 de 2020.

 1Abstract— Elastic wave modeling presents a challenge to

implement since it is a computationally costly procedure.

Nowadays, due to GPU increased power jointly with development

in HPC computation, it is possible to execute elastic modeling

with better execution times and memory use. This study

evaluates the performance of 2 strategies for implementing

elastic modeling using different kernel launching layouts, CPML

memory allocation strategies, and wavefield storage

management. The performance measures show that the

algorithm, which includes 2D kernel launching layout, CPML

reduced memory strategy, and GPU global memory storage to

save wavefield cube peaks up to 88.4% better execution time and

uses 13.3 times less memory to obtain the same elastic modeling

results. There is also an increasing trend of enhancement in

execution times and memory savings when working with models

of bigger sizes with this strategy.

 Keywords— CPML, CUDA, Elastic wave modeling, GPU,

HPC.

 Resumen— El modelado de onda elástico presenta un reto de

implementación debido a que es un procedimiento

1Producto derivado del proyecto de investigación “Estrategia de

implementación de la inversión de onda completa (FWI) 2D elástica en el

dominio del tiempo utilizando un clúster GPU”, apoyado por la Universidad

Industrial de Santander a través del Grupo de investigación en Conectividad y

Procesamiento de señales (CPS) y el Grupo de Investigación en Control,

Electrónica, Modelado y Simulación.

 A. Páez, Universidad Industrial de Santander, Bucaramanga, Colombia,

email: anderson2198151@correo.uis.edu.co.

 A. B. Ramírez, Universidad Industrial de Santander, Bucaramanga,

Colombia, email: anaberam@uis.edu.co.

 I. J. Sánchez, Universidad Industrial de Santander, Bucaramanga,

Colombia, email: ijsangal@correo.uis.edu.co.

 How to cite: A. Páez, A., Ramírez, A. B. y Sánchez, I. J.

Computational strategies for implementation of 2D elastic wave modeling in

GPU, Entre Ciencia e Ingeniería, vol. 14, no. 28, pp. 52-58, julio-diciembre,
2020. DOI: https://doi.org/ 10.31908/19098367.2016.

Attribution-NonCommercial 4.0 Intenational (CC By-NC 4.0)

computacionalmente costoso. En la actualidad, debido al

incremento en la potencia en GPU junto con el desarrollo de la

computación HPC, es posible ejecutar modelado elástico con

mejores tiempos de ejecución y uso de memoria. Este estudio

evalúa el desempeño de 2 estrategias para implementar modelado

elástico usando diferentes diseños para ejecución de kernel,

estrategias de asignación de memoria para el cálculo de CPML y

administración del almacenamiento del campo de onda. Las

mediciones de desempeño muestran que el algoritmo que incluye

diseño de ejecución de kernel 2D, la estrategia de memoria

reducida CPML y el almacenamiento en memoria global de GPU

del campo de onda alcanza un máximo de 88.4% mejor tiempo

de ejecución y utiliza un 13.3 veces menos memoria para obtener

los mismos resultados de modelado elástico. Existe también una

creciente tendencia de mejora de tiempo de ejecución y ahorro de

memoria cuando se trabaja con modelos de tamaños más grandes

con esta estrategia.

 Palabras clave— CPML, CUDA, Modelado de onda elástico,

GPU, HPC.

I. INTRODUCTION

EISMIC imaging as part of exploration seismology is

focused on building physical properties images to gain

better insights of earth subsurface; it is founded on how

seismic waves can collect information of those properties

while traveling into determined medium, and this feature is

greatly exploited in several imaging reconstruction methods

[1], [2]

and its applications [3]. Due to the aforementioned, simulation

of wave propagation has become a necessity; however,

implementation of numerical modeling is widely known to be

a costly computational method mainly because of the amount

of information to process; furthermore, this cost is increased if

complex subsurface models are considered as it is the case of

the elastic model.

Due to the high consumption of computing resources, the

implementation of numerical elastic modeling is still a

challenge to deal with in terms of computational performance.

Nevertheless, development in graphical processing units

(GPU) [4] and the emergence of new programming paradigms

S

mailto:anderson2198151@correo.uis.edu.co

53

 Entre Ciencia e Ingeniería, vol. 14, no. 28, pp.52-58, julio-diciembre, 2020.

as heterogeneous computing and High-Performance

Computing (HPC) [5], [6] have let to tackle this problem by

reducing time elapse, memory consumption, and other

metrics; even though the necessity of improving performance

is still present.

Based on the previously mentioned, finding new strategies

to implement numerical elastic modeling, which explores new

programming techniques, technological developments, and

hardware equipment, is highly appreciated. This study

presents a comparison of two elastic wave modeling

algorithms running in GPU, which exploit three different

features of hardware programming such as kernel launching

layout, CPML memory allocation management, and CPU-

GPU memory transference. In the end, an evaluation between

both algorithms is performed using metrics like execution time

and memory consumption to determine which one has better

performance.

II. METHODS

A. Elastic wave modeling

Numerical wave modeling is considered a powerful tool for

simulating how seismic waves travel over different subsurface

layers in the earth. Elastic wave modeling considers that the

earth could be modeled by three parameters named λ, μ, and ρ;

those parameters are related to each other by elastic wave

propagation set of equations presented by Virieux in the P-Sv

form [7] in equations Eq (1), Eq (2), Eq (3), Eq (4), Eq (5).

 (1)

 (2)

 (3)

 (4)

 (5)

Where x and z are coordinates on the plane, vx and vz are

velocity components, σxx, σxz, and σzz are the stresses, and

finally, φ correspond to the seismic source which generates the

wave to be propagated. Simulation of the source is performed

commonly using a Ricker wavelet given by the expression Eq

(6).

 (6)

B. CPML implementation

When implementing numerical modeling, an undesired

behavior of wave reflection is found at the boundaries of the

model. To avoid this issue is necessary to establish some

energy-absorbing artificial zones near the boundaries and

prevent reflections from appearing.

There are several methods to perform this task; among

them, Convolutional Perfectly Matched Layers (CPML) [8] is

widely used because it has proved to be very effective in

reducing energy from seismic waves compared with other

classic options. Basically, CPML method adds auxiliary

variables to the modeling expressions set presented, as shown

in equations Eq (7), Eq (8), Eq (9), Eq (10), and Eq (11).

 (7)

 (8)

 (9)

 (10)

 (11)

Those auxiliary variables are updated following

expressions in Eq (12) and Eq (13)

 (12)

 (13)

 Where i and k are x or z coordinates depending on which

variable is working, a and b represent attenuation coefficients

given by the method.

C. Discretization

 There are several numerical methods for solving the

propagation equations; among them, finite differences (FD)

are widely used because of their easiness of implementation.

A decision to use the second order in time and fourth order in

space option was made since it allows to achieve an adequate

balance for numerical efficiency and small truncation error.

Equations Eq (14), Eq (15), and Eq (16) represent

discretization expressions for differential operators, which are

applied over propagation equations.

 (14)

 (15)

 (16)

 The discretization procedure generates a grid distribution of

the model where all physical dimensions are adapted into

memory spaces that will contain information related to elastic

parameters; in this grid, the length and depth dimensions are

turned into memory locations Nx × Nz depending on step sizes

Δx and Δz; it is common for avoiding anisotropic effects in

modeling to choose Δx = Δz = Δh; discretization result is

shown in Fig. 1a. To properly implement elastic modeling is

necessary to use a staggered-grid scheme [9] since velocity

fields update depend on stress fields located in other position

as shown in Fig. 1b

54

Entre Ciencia e Ingeniería, vol. 14, no. 28, pp.52-58, julio-diciembre, 2020.

Fig. 1. Discretization result a) grid schematization of model, b) staggered-

grid scheme for elastic wave modeling implemented.

Fig. 2. Threads/Blocks layout for Kernel execution: a) 1D layout, b) 2D

layout.

D. Thread/Block launching layout on GPU for elastic wave

modeling

 Nvidia Graphic Processing Units (GPU) contains Streaming

Multiprocessors (SM) as the main component for launching

Threads and groups of threads known as Blocks, SM

schedules necessary resources to run Kernels containing the

code to be parallelized through the application of

Threads/Blocks layouts [6], [10]; in the case of elastic wave

modeling the parallel code comprise the propagation equations

already presented. Once the grid from discretization is created

is possible to allocate GPU memory (that could be seen as a

matrix) and design launching layouts to properly run kernels

and implement modeling.

 When implementing a specific layout over a matrix, usually

the first approach considers using one thread to perform

calculations per every memory space allocated since is the

simplest and easiest option; this distribution leads to a 1D

layout where there is one big block containing all threads

processing completely the memory space giving a total

number of threads per block of Nx × Nz. Even though the

mentioned 1D layout is the first option, it is not a practical

implementation since GPU hardware architecture limits block

sizes to contain a maximum of 1024 threads per block, which

directly limits the model size to be processed with this layout.

 Another design considers the allocation of threads to

correspond with Nx memory spaces, and the number of blocks

will be bound to Nz value, which represents the rows in a

matrix configuration; this configuration still keeps the 1D

fashion introduced in the previous example, but in this case,

the number of blocks utilized is incremented, this design is

presented in Fig. 2a. This layout improves over the previous,

allowing to work with bigger size models but still is limited

for block size limit since, in this case, a row with more than

1024 components could not be adequately processed.

 In addition to previously mentioned of resource allocation

in Nvidia hardware when launching layouts, it is important to

mention that GPU architecture considers groups of 32 threads

internally as a structure called warp; when launching a Kernel

all threads allocated in the selected layout are divided to adjust

them into the warp size and later some of those warps are

launched concurrently.

 The number of warps available to run simultaneously

depends on the distribution of registers and shared memory

made when one layout is established; however, this resource

scheduling is not directly controlled by the programmer

because it is performed automatically by GPU. Due to this

lack of control by the programmer, the appropriate layout

design is important for better use of GPU resources, but there

are no specific instructions to follow when designing

launching layouts. Therefore, it becomes an empiric procedure

highly depending on the application and hardware availability.

The number of warps available to run simultaneously

depends on the distribution of registers and shared memory

made when one layout is established, however, this resource

scheduling is not directly controlled by the programmer

because it is performed automatically by GPU. Due to this

lack of control by the programmer, the appropriate layout

design is important for better use of GPU resources, but there

are no specific instructions to follow when designing

launching layouts. Therefore, it becomes an empiric procedure

highly depending on the application and hardware availability.

 Despite the aforementioned, Nvidia has given some

suggestions [11] that could help in layout design; among them,

they recommend to keep the number of threads per block a

multiple of warp size, avoidance of small block sizes, and

carry the number of blocks to a much greater number than

SMs. By taking those recommendations, it is possible to

propose a new layout as depicted in Fig. 2b

 This distribution is achieved by dividing the discretization

matrix into smaller 2D matrixes of the specific size to cover

the space of the bigger, those smaller matrixes will correspond

to the blocks in the layout, and each of these blocks will have

a 2D thread distribution internally. In this way, it is possible to

work with a greater quantity of blocks while keeping threads

per block as multiple of warp size; this layout also lets dealing

with bigger model sizes easily with no major changes.

There are many possibilities for selecting a 2D layout

suitable for a determined model, a useful suggestion given by

Nvidia best practices guidelines [11] would be to execute

kernels based on a block size of 128 or 256 threads.

E. Common and reduced memory CPML memory allocation

strategies

 When implementing numerical modeling is crucial the

definition of absorbing zones for CPML processing; those

areas of fixed thickness and length are depicted in Fig. 3a. In

the image is clearly differentiated two big areas named

55

 Entre Ciencia e Ingeniería, vol. 14, no. 28, pp.52-58, julio-diciembre, 2020.

Regular and CPML zones, in the first, seismic waves travel

unaltered while in the latter wave energy is reduced as you go

deeper in that area.

Fig. 3. CPML zones distribution and memory allocation: a) common CPML

allocation strategy, b) CPML reduced memory strategy

Each CPML zone has a specific thickness Lx or Lz that

extends to cover fully the corresponding dimension Nz or Nx;

when implementing over GPU those zones must have their

own memory space, apart from that used for updating velocity

and stress fields, where specific CPML calculations are

performed.

It is common to find CPML implementations in elastic

wave modeling that allocate memory spaces of Nx × Nz bytes

looking to keep the easiness in code programming but

sacrificing valuable GPU memory resources.

When using a common scheme, the amount of GPU

resources invested in operations is greater since on every

iteration a CPML kernel is executed, it covers completely

(colored in Fig. 3a) the model memory space allocated

including regular zone where is supposed not to be performed

any CPML instruction. However, indexing memory locations,

jumping over indexes, and internal instructions come about,

which lead to GPU memory and processing threads to be

misused, in addition, this inefficient behavior could be

worsened if bigger size models are considered.

Another alternative to deal with CPML processing

considers 5 CPML zones with reduced memory allocation to

keep better control on memory resources and code execution.

In addition, Kernels for CPML operations avoid accessing the

regular zone, as shown in Fig. 3b.

Unlike the common implementation, the new proposed

distribution considers 2 independent memory allocation zones

of size Lx × (Nz - Lz) bytes, another 2 of (Lx × Lz) bytes, finally,

1 area of (Nx - 2Lx) × Lz bytes; using this scheme assures that

total memory used in GPU decreases even in cases where

model sizes are bigger since allocations formulas only rely on

1 dimension from the model while maintaining constant the

other which in most cases is a low value Lx or Lz.

It is important to mention that the amount of GPU resources

saved in the new scheme decrease when model size

dimensions are diminished, leading at some point to a virtual

match in performance for both implementations of CPML

processing, however in a practical application of elastic

modeling where is common finding survey areas covering

several kilometers of length and depth this strategy could be

useful for more efficient resources management in the GPU.

F. CPU-GPU memory management for wavefield cube

storage

 According to Nvidia Best practices guidelines [11], GPU

memory optimization is the key area to develop when

algorithm performance is looked for; this is particularly

applied in elastic wave modeling where high-performance

levels are expected, especially in execution time and memory

consumption because this method is usually used as the first

stage in more complex procedures as inversion [2], [12] and

migration [13].

 Programming over GPU involves the implementation of

heterogeneous computing [5] paradigm was basically a CPU

act as the controller for execution flow of the program and

GPU perform necessary heavyweight operations; each

hardware device has its own memory space and one algorithm

running under this paradigm necessarily will share

information between those spaces for proper execution.

 Nvidia GPU architecture based its kernel execution

procedure over a memory hierarchy, which includes several

memory types; among them, the registers, shared and global

spaces are worth to be considered since they are the most

commonly used in general applications. Registers and shared

memory are the fastest memory in GPU, but those resources

are limited to some Kilobytes, whereas global memory

(VRAM) is slower, but there are much more available for use,

which makes it ideal for dealing with big size wavefield cubes

from modeling.

 When executing elastic wave modeling is important to save

velocity and stress fields updated and later perform the

creation of a wavefield cube with those fields. To achieve that,

Fig. 4 presents one approach where GPU updates one

wavefield and transfers it to CPU system memory on every

iteration. In this approach, elastic modeling is performed by

executing Kernels that update wavefield iteratively; once the

field is updated, a data transference carries that field from

GPU global memory to CPU over PCI-e bus; when the

wavefield reaches the system memory, it is saved, and

execution of next iteration for wavefield update in GPU is

allowed.

The main drawback in this strategy is associated with the

reduced bandwidth available in the PCI-e x16 channel giving

a maximum of 16GB/s whereas the VRAM-GPU bandwidth

could peak a maximum of 128GB/s (in a Nvidia Turing Gtx

1650 card). In addition to bandwidth, the overhead due to

GPU-CPU transfers could impact the execution time of wave

modeling.

Another strategy for wavefield cube storage is depicted in

Fig. 5; in this case, the GPU updates the wavefield, but this

time is kept in global memory and saved on it, creating the

cube; once the propagation is finished, a full cube transference

is performed to CPU. This strategy overcomes most

disadvantages of the previous scheme by exploiting the higher

bandwidth on GPU transfers to speed up the execution of

kernels and construction of propagation cube; likewise, it

performs only one big transfer between GPU-CPU memory

spaces which could reduce impact in execution time due to

overhead.

56

Entre Ciencia e Ingeniería, vol. 14, no. 28, pp.52-58, julio-diciembre, 2020.

Fig. 4. Wavefield cube saved in CPU system memory (RAM) every iteration

GPU updates the wavefield.

Fig. 5. Wavefield cube saved in GPU global memory (VRAM) every

iteration GPU updates the wavefield.

Fig. 6. Flowchart for implementation of elastic modeling in a heterogeneous

system highlighting specific locations where both strategies tested differ.

III. RESULTS

Proposed tests intent to quantify the impact of GPU

launching layout schemes, GPU memory management, and

data transference when an elastic modeling algorithm is

executed. Two different algorithms named Algorithm 1 and

Algorithm 2 were developed to execute elastic modeling; the

flowchart in Fig. 6 depicts the general steps included in the

programming, differences in execution come about when

choosing CPML memory scheme (number 1), thread/block

layout (number 2) and storage of wavefield cube (number 3).

Algorithm 1 implements a 2D thread/block layout for

launching GPU Kernels, it also uses the CPML reduced

memory allocation strategy, and it manages wavefield creation

of vx field in VRAM in the GPU, on the other side; Algorithm

2 considers a 2D thread/block layout initially and later is

changed to 1D layout, it includes common CPML memory

allocation and wavefield construction for vx field is performed

using RAM memory of the CPU.

 Wave propagation implemented uses 2nd order in time and

4th in space finite differences option, space steps of Δx = Δz =

5m and a time step of Δt = 1ms, an isotropic and homogeneous

medium with two planar layers with velocities Vp = 3000 m/s

and Vp = 1500 m/s respectively, the two layers shared other

parameters as Vs = 1730 m/s, ρ = 2500 Kg/m3; the source is

simulated by Ricker wavelet with a central frequency of 15Hz.

Hardware specifications include a standalone station with a

CPU Ryzen 5 3550H, 8GB of RAM; it contains a GPU GTX

1650 from Nvidia with 4GB of Video RAM; the system runs

under Debian OS, and the language used for programming is

CUDA C.

Fig. 7 shows four snapshots of elastic wave modeling

implemented over an area of 2560 m × 1280 m, which

corresponds to a wavefield of 512 × 256 points with selected

discretization.

Fig. 7. Elastic wave modeling snapshots in isotropic medium with two layers.

a) t = 0.25 s, b) t = 0.4 s, c) t = 0.7 s, d) t = 0.95 s.

Table I summarizes the results for execution times of each

algorithm implemented (Alg 1 and Alg 2) in three tests where

elastic modeling was performed at three simulations times

using three different model grids. In this case, both codes use

2D layout in order to isolate the impact of memory

management and data transference from Kernel launching

scheme. Measurements show that Algorithm 1 improves

execution time over algorithm 2, ranging from a minimum of

8.9% to 18.1%; there is also a continuous enhancement in

execution time when rising both simulation time and model

size; however, a specially pronounced improvement trend is

detected when model size is incremented.

57

 Entre Ciencia e Ingeniería, vol. 14, no. 28, pp.52-58, julio-diciembre, 2020.

TABLE I

EXECUTION TIMES FOR ALGORITHMS 1 AND 2 CONSIDERING 3 DIFFERENT

MODEL SIZES AND 3 SIMULATION TIMES, BOTH ALGORITHMS USE 2D LAYOUT

Simulation time (s)
Model size (points)

256 × 256 512 × 256 512 × 512

tsim = 1 s

Alg 1 (s) 1.01 1.48 2.25

Alg 2 (s) 1.10 1.64 2.56

Diff (%) 8.9 10.8 13.7

tsim = 1.5 s

Alg 1 (s) 1.37 2.00 3.24

Alg 2 (s) 1.50 2.30 3.72

Diff (%) 9.4 15.0 14.8

tsim = 2 s

Alg 1 (s) 1.69 2.57 4.14

Alg 2 (s) 1.86 2.98 4.89

Diff (%) 10.0 15.9 18.1

Table II collects the same information as in table I, and

similar tests were performed; however, in this case, algorithm

2 implements a 1D layout. The idea at this point is to measure

execution times in codes which use not only different CPML

memory management strategy but also different launching

schemes. Results show vast gains in time of algorithm 1 over

2 varying from 42.5% climbing to 88.4%; likewise, there is an

improvement trend going upwards with increments in

simulation time and model size. It is important to mention that

major gains in execution time were obtained with bigger

model sizes tested according to data from both tables I and II.

TABLE II

EXECUTION TIMES FOR ALGORITHMS 1 AND 2 CONSIDERING 3 DIFFERENT

MODEL SIZES AND 3 SIMULATION TIMES, ALGORITHM 1 IMPLEMENTS 2D

LAYOUT WHEREAS ALGORITHM 2 IMPLEMENTS 1D LAYOUT

Simulation time (s)
Model size (points)

256 × 256 512 × 256 512 × 512

tsim = 1 s

Alg 1 (s) 1.01 1.48 2.25

Alg 2 (s) 1.44 2.22 4.04

Diff (%) 42.5 50.0 79.5

tsim = 1.5 s

Alg 1 (s) 1.37 2.00 3.24

Alg 2 (s) 2.01 3.17 5.83

Diff (%) 46.7 58.5 79.9

tsim = 2 s

Alg 1 (s) 1.69 2.57 4.14

Alg 2 (s) 2.52 4.29 7.83

Diff (%) 49.1 66.9 88.4

TABLE III

VRAM USE FOR ALGORITHM 1 AND 2 CONSIDERING 5 DIFFERENT MODEL SIZES

AND A SIMULATION TIME OF 1.5 S

Model size

(points)

tsim = 1.5 s

Alg1

(MB)

Alg2

(MB)

Diff

(MB)

Model

Size (MB)

Proportion/

Model size

256 × 256 435 437 2 0.250 8.0

512 × 256 815 819 4 0.500 8.0

512 × 512 1577 1583 6 1.000 6.0

768 × 512 2345 2361 16 1.500 10.6

768 × 768 3515 3545 30 2.250 13.3

 Table III includes data related to GPU memory used for

each algorithm over different model sizes; the Diff column

shows how much more memory algorithm 2 used compared

with algorithm 1. This value ranges from 2 to 30MB. Column

Proportion/model size presents how many times additional

memory used in algorithm 2 is above the memory necessary

for saving a model in GPU. Figures on those columns allow us

to identify a rising trend in memory consumption of algorithm

2 over 1 due to the strong relation between memory used and

model dimensions Nx - Nz for CPML calculation in algorithm

2. This relation is reduced when implementing CPML reduced

memory strategy and thus, the impact on the memory used.

IV. CONCLUSIONS

The results show that one algorithm using only CPML

reduced memory strategy together with wavefield cube

creation in GPU improves execution time by a maximum of

18.1% in tests. There also exists a continuous enhancement

trend with model size increments and higher times of

simulation. If a 2D launching layout is added to the strategy,

the figures are increased, ranging from a minimum of 42.5%

to a peak of 88.4%. In all cases, major gains were obtained

when working with the bigger model sizes for all times of

simulation. From data, it is noticeable the tremendous

influence that Kernel launching layout has over execution time

compared with CPML memory management; however, the

combined effect is outstanding.

Bigger memory gains for algorithm 1 over 2 were found

when working with bigger model sizes, reaching a maximum

of 30MB in tests, which make something close to 1% of

saving compared to GPU total memory used. However, if

compared with the memory consumption of the model, which

is more adequate since the majority of the memory used in the

GPU is associated with the wavefield cube storage, it is

possible to say that the common memory management

strategy took 13.3 times more memory than CPML reduced

memory strategy when executing wave modeling; also, it can

be identified a continuous increasing trend in memory

consumption when model sizes rise up.

REFERENCES

[1] Alaei, B., “Seismic Modeling of Complex Geological Structures,” in

Seismic Waves-Research and Analysis, [Online], M. Kanao, Ed. InTech,

2012, chp. 11. https://www.intechopen.com/books/seismic-waves-

research-and-analysis.
[2] Virieux, J., Asnaashari, A., Brossier, R., Métivier, L., Ribodetti, A., Zhou,

W. (2017, Jan.) “An introduction to full waveform inversion,” in

Encyclopedia of exploration geophysics [Online], Ed, Society of

Exploration Geophysicists, 2017, R1-R40.

[3] Permana, T., Sudarmaji, M. (2014, Oct.) “The 2D finite difference

numerical modelling of P-Sv wave propagation in elastic heterogeneneous
medium using graphic processing unit: Case study of mount Merapi

topography, Yogyakarta,” in Proc International Conference on Physics
2014, pp. 74-85.

[4] Keckler, S.W., Dally, W.J., Khailany, B., Garland, M., Glasco, D., (2011,

Oct.) “Gpus and the future of parallel computing,” IEEE Micro 31(5), pp.
7-17.

[5] Arora, M., “The architecture and evolution of cpu-gpu systems for

general purpose computing,” Department of Computer Science and
Engineering, University of California, San Diego 2012. [Online]

Available:

http://cseweb.ucsd.edu/~marora/files/papers/REReport_ManishArora.p
df

[6] Cheng, J., Grossman, M., Mcercher, T., “Professional CUDA C

Programming.”, , Indiana ,Wiley and Sons,2014.

[7] Virieux, J. (1986, Apr.) “P-sv wave propagation in heterogeneous media:

Velocity-stress finite-difference method” Geophysics 51(4), pp. 889-1033.

https://www.intechopen.com/books/seismic-waves-research-and-analysis
https://www.intechopen.com/books/seismic-waves-research-and-analysis

58

Entre Ciencia e Ingeniería, vol. 14, no. 28, pp.52-58, julio-diciembre, 2020.

[8] Komatitsch, D., Martin, R., (2007, Sept.) “An unsplit convolutional

perfectly matched layer improved at grazing incidence for the seismic

wave equation,” Geophysics 72(5), pp. 1ZO-Z83.

[9] Moczo, P., Robertsson, J.O., Eisner, L., (2007) “The finite-difference

time-domain method for modeling of seismic wave propagation”
Advances in geophysics 48, pp. 421-516.

[10] CUDA C++ Programming Guide, Nvidia Corp. 2020.

[11] CUDA C++ Best Practices Guide, Nvidia Corp. 2020.
[12] Brittan, J., Bai, J., Delome, H., Wang, C., Yingst, D., (2013, Oct.) “Full

waveform inversion-the state of the art,” First Break 31(10), pp. 75-81.
Available:

https://www.iongeo.com/virtuals/ResourceArchives/content/documents/R

esource%20Center/Articles/FB_Full_Waveform_Inversion_131011.pdf
[13] Menke, W., “Geophysical Data Analysis”, 4th Ed, Elsevier Inc, 2018.

Anderson Páez Chanagá. Anderson Paez received

the B.E.E degree in 2009 from Universidad
Industrial de Santander, Bucaramanga, Colombia.

He is currently developing M.Sc. studies at the same

University. As professional engineer, he has worked
in Instrumentation, Electrical and Control disciplines

in Oil&Gas, Cement, and Electric power generation

industries for different companies as SNC Lavalin,
TGI, Termozipa and others; he also has worked in

academy at UIS and SENA. He is a member of the

Connectivity and signal processing group (CPS) at
UIS, and his current research interest fields are High Performance Computing

applications, machine learning, seismic data processing.

ORCID https://orcid.org/0000-0002-4658-5011.

Ana Beatriz Ramirez Silva. Ana B. Ramirez

received the B.E.E degree from the Universidad

Industrial de Santander, Colombia; and the PhD
degree in Electrical Engineering from University of

Delaware, USA. Her research interest fields are

seismic signal processing, compressive sensing, and

acoustic medical imaging. She is currently Full

Time Professor of the Electrical, Electronics and
Communications Engineering department at

Universidad Industrial de Santander, Colombia.

 Ivan Javier Sánchez Galvis. Ivan Sanchez
received the B.E.E degree in 2014 and the M.Sc.

degree in 2017, both from Universidad Industrial de

Santander, Colombia. He is currently pursuing his
Ph.D. in Engineering at the same University. His

research interest fields are seismic signal processing,

computational modeling, and machine learning. He
is also currently a Lecturer of the Electrical,

Electronics and Communications Engineering

department at Universidad Industrial de Santander.
Colombia. ORCID https://orcid.org/0000-0001-9972-9827.

.

https://www.iongeo.com/virtuals/ResourceArchives/content/documents/Resource%20Center/Articles/FB_Full_Waveform_Inversion_131011.pdf
https://www.iongeo.com/virtuals/ResourceArchives/content/documents/Resource%20Center/Articles/FB_Full_Waveform_Inversion_131011.pdf
https://orcid.org/0000-0001-9972-9827

