Propiedades de concretos y morteros modificados con nanomateriales: estado del arte
Resumen
El artículo revisa los avances de la nanotecnología en los campos de la arquitectura, la ingeniería civil y la industria de la construcción, con énfasis en los seis nanomateriales más utilizados actualmente en esa industria. Se concluye que la nanotecnología amplía las potencialidades del concreto y reduce su impacto ambiental, porque logra mayor resistencia mecánica con menores dimensiones de los elementos estructurales.
Descargas
Citas
Agrios, A. G. & Pichat, P. (2005). State of the art and perspectives on materials and applications of photocatalysis over TiO2. Journal of Applied Electrochemistry,35(7), 655-663.
Amin, M. & Abu el-Hassan, K. (2015). Effect of using different types of nano materials on mechanical properties of high strength concrete. Construction and Building Materials, 80, 116-124.
Amin, M. S., El-Gamal, S. M. A. & Hashem, F. S. (2013). Effect of addition of nano-magnetite on the hydration characteristics of hardened Portland cement and high slag cement pastes. Journal of Thermal Analysis and Calorimetry, 112(3), 1253–1259.
Arani, A. J. & Kolahchi, R. (2016). Buckling analysis of embedded concrete columns armed with carbon nanotubes. Computers and Concrete, 17(5), 567-578.
Arefi, M. R., Javeri, M. R. & Mollaahmadi, E. (2011). To study the effect of adding Al2O3 nanoparticles on the mechanical properties and microstructure of cement mortar. Life Science Journal, 8(4), 613-617.
Azizi Shirkoohi, Z. (2016). Application of Nanotechnology in the Concrete Industry Improve the Performance of Sustainable Buildings. International Academic Journal of Science and Engineering, 3(3), 89-97.
Balaguru, P. & Chong, K. (2006). Nanotechnology and concrete: research opportunities. Proceedings of the ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, November 7, 2006, Denver, USA.
Belkowitz, J. S., Belkowitz, W. B., Nawrocki, K. & Fisher, F. T. (2015). Impact of Nanosilica Size and Surface Area on Concrete Properties. ACI Materials Journal, 112(3), 419-428.
Benedix, R., Dehn, F., Quaas, J. & Orgass, M. (2000). Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer, 5, 157-168.
Camiletti, J., Nehdi, M. L. & Soliman, A. M. (2013). Effect of nano-calcium carbonate on early-age properties of ultrahigh-performance concrete. Magazine of Concrete Research, 65(5), 297–307.
Cassar, L. (2004). Photocatalysis of cementitious materials: clean buildings and clean air. MRS Bulletin, 29(5), 328-331
Chen, J., Kou, S. C. & Poon, C. S. (2012). Hydration and properties of nano-TiO2 blended cement composites. Cement and Concrete Composites, 34, 642-649.
Du, H., Du, S. & Liu, X. (2014). Durability erformances of concrete with nanosilica. Construction and Building Materials, 73, 705-712.
Eskandari, H., Vaghefi, M. & Kowsari, K. (2015). Investigation of Mechanical and Durability Properties of Concrete Influenced by Hybrid Nano Silica and Micro Zeolite. Procedia Materials Science, 11, 594-599.
Ge, Z., Wang, K., Sun, R., Huang, D. & Hu, Y. (2014). Properties of selfconsolidating concrete containing nano-CaCO3. Journal of Sustainable Cement- Based Materials, 3(3-4), 191-200.
George, C., Beeldens, A., Barmpas, F., Doussin, J. F., Manganelli, G., Herrmann, H…& Mellouki, A. (2016). Impact of photocatalytic remediation of pollutants on urban air quality. Frontiers of Environmental Science & Engineering, 10(5), 1-11.
Gonzalez, M., Safiuddin, M., Cao, J. & Tighe, S. (2013). Sound Absorption and Friction Responses of Nanoconcrete for Rigid Pavements. Transportation Research Record: Journal of the Transportation Research Board, (2369), 87-94.
Gopinath, S., Mouli, P. C., Murthy, A. R., Iyer, N. R. & Maheswaran, S. (2012). Effect of nano silica on mechanical properties and durability of normal strength concrete. Archives of Civil Engineering, 58(4), 433-444.
Greco, E., Ciliberto, E., Cirino, A. M., Capitani, D. & Di Tullio, V. (2016). A new preparation of doped photocatalytic TiO2 anatase nanoparticles: a preliminary study for the removal of pollutants in confined museum areas. Applied Physics A, 122(530), 1-6.
Hassan, M. M., Dylla, H., Mohammad, L. N. & Rupnow, T. (2010). Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavementConstruction and building materials, 24(8), 1456-1461
Jafarbeglou, M., Abdouss, M. & Ramezanianpour, A. A. (2015). Nanoscience and Nano Engineering in Concrete Advances, a Review. International Journal of Nanoscience and Nanotechnology, 11(4), 263-273.
Jittabut, P. (2015). Effect of Nanosilica on Mechanical and Thermal Properties of Cement Composites for Thermal Energy Storage Materials. Energy Procedia, 79, 10-17.
Kang, H. J., Song, M. S., Park, J. H. & Song, S. J. (2011). Influence of Nano Silica Dispersant on Hydration Properties of Cementitious Materials. Journal of the Korean Ceramic Society, 48(6), 510-515.
Koohdaragh, M. & Mohamadi, H. H. (2011). Comparison of mechanical of the concrete samples containing micro-silica and nano-silica. Australian Journal of Basic and Applied Sciences, 5(10), 560-563.
Kharissova, O. V., Torres Martínez, L. & Kharisov, B. I. (2016). “Recent Trends of Reinforcement of Cement with Carbon Nanotubes and Fibers”. En: Advances in Carbon Nanostructures, ed. Prof. AMT da Silva, INTECH.
Larrea, P. & Domínguez, S. (2011). Hormigón simple utilizando agregado volcánico de las islas Galápagos “San Cristóbal”. Tesis. Escuela Superior Politécnica del Litoral. Lee, J. H., Kim, Y. K. & Lee, S. W. (2015). Experimental Study on the Long-term Performance of TiO2 Concrete for Road Structures. Journal of the Korean Society of Civil Engineers, 35(3), 691-698.
Li, H., Zhang, M. H. & Ou, J. P. (2006). Abrasion resistance of concrete containing nano-particles for pavement. Wear, 260, 1262-1266.
Li, Z., Wang, H., He, S., Lu, Y. & Wang, M. (2006). Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Materials Letters, 60(3), 356-359.
Liu, J., Li, Q. & Xu, S. (2015). Influence of nanoparticles on fluidity and mechanical properties of cement mortar. Construction and Building Materials, 101, 892-901.
Lin, K. L., Chang, W. C., Lin, D. F., Luo, H. L. & Tsai, M. C. (2008). Effects of nano-SiO2 and different ash particle sizes on sludge sh–cement mortar. Journal of Environmental Management, 88(4), 708-714.
Lu, L., Ouyang, D. & Xu, W. (2016). Mechanical properties and durability of ultrahigh strength concrete incorporating multi-walled carbon nanotubes. Materials, 9(6), 419-430.
Mahdikhani, M. & Ramezanianpour, A. A. (2014). Mechanical properties and durability of self consolidating cementitious materials incorporating nano silica and silica fume. Computers and Concrete, 14(2), 175-191.
Maubert, M., Soto, L., León, A. M. & Flores, J. (2009). Nanoturbos de carbono: La era de la nanotecnología. Razón y palabra, 68, 17-27.
Mohd Ibrahim, M. Y., Ramadhansyah, P. J., Mohd Rosli, H. & Wan Ibrahim, M. H. (2016). A review of microstructure properties of porous concrete pavement incorporating nano silica. Journal of Engineering and Applied Sciences, 11(20),11832-11835.
Mohd Ibrahim, M. Y., Ramadhansyah, P. J., Mohd Rosli, H., Wan Ibrahim, M. H. & Fadzli, M. N. (2015). Utilization of Nano Silica as Cement Paste in Mortar and Porous Concrete Pavement. In Advanced Materials Research, 1113, 135-139.
Mohd Ibrahim, M. Y., Ramadhansyah, P. J., Mohd Rosli, H. & Mohd Haziman, W. I. (2014). An Overview on the Performance of Nano Silica Materials on the Properties of Porous Concrete Pavement. Advanced Review on Scientific Research, 1(1), 34-42.
Molina-Prieto, L. F. (2016). Nanotecnología: herramienta inteligente para la conservación del patrimonio arquitectónico y urbano. Revista de investigación,9(1), 7-22. Molina-Prieto, L. F. (2015). Urban storm water resource management: strategies, policies and urban regulations in five European countries. Revista de investigación, 8(1), 125-138.
Murata, Y., Tawara, H., Obata, H. & Takeuchi, K. (1999). Air purifying pavement: development of photocatalytic concrete blocks. Journal of Advanced Oxidation Technologies, 4(2), 227-230.
Nazari, A., Riahi, S., Riahi, S., Shamekhi, S. F. & Khademno, A. (2010).Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. Journal of American Science, 6(5), 6-9. Pacheco-Torgal, F. & Jalali, S. (2011). anotechnology: advantages and drawbacks in the field of construction and building materials. Construction and Building Materials, 25(2), 582-590.
Portella Bragança, M. D. (2014). Avaliação e monitoramento dos mecanismos de deterioração do concreto exposto aos íons cloreto e sulfato e o efeito da adiçãode Nano-Fe3O4 por espectroscopia de impedancia eletroquímica. Tese Doutoral, Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-graduação em Engenharia-PIPE.
Quercia, G. & Brouwers, H. J. H. (2010). Application of nano-silica (nS) in concrete mixtures. In 8th fib International Ph. D. Symposium in ivil Engineering.Lyngby (pp. 431-436).
Ramirez, A. M., Demeestere, K., De Belie, N., Mäntylä, T. & Levänen, E. (2010). Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Building and Environment, 45, 832-838. Rong, Z., Sun, W., Xiao, H. & Jiang, G. (2015). Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cement and Concrete Composites, 56, 25-31.
Safiuddin, M., Gonzalez, M., Cao, J. & Tighe, S. L. (2014). State-of-the-art report on use of nano-materials in concrete. International Journal of Pavement Engineering, 15(10), 940-949.
Said, A. M., Zeidan, M. S., Bassuoni, M. T. & Tian, Y. (2012). Properties of concrete incorporating nano-silica. Construction and Building Materials, 36, 838-844.
Sanchez, F. & Sobolev, K. (2010). Nanotechnology in concrete–a review. Construction and Building Materials, 24(11), 2060-2071.
Senff, L., Hotza, D., Repette, W. L., Ferreira, V. M. & Labrincha, J. A. (2010). Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Construction and Building Materials, 24(8), 1432-1437.
Shaikh, F. U. & Supit, S. W. (2014). Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO 3) nanoparticles. Construction and Building Materials, 70, 309-321.
Shang, S. S. & Song, X. B. (2017). Experimental Research on Mechanicals Performance of Carbon Nanotubes Reinforced Concrete. Applied Mechanics and Materials, 858, 173-178.
Shen, W., Zhang, C., Li, Q., Zhang, W., Cao, L. & Ye, J. (2015). Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete. Journal of Cleaner Production, 87, 762-765.
Sikora, P., Horszczaruk, E., Cendrowski, K. & Mijowska, E. (2016). The Influence of nano-Fe3O4 on the microstructure and mechanical properties of cementitious composites. Nanoscale Research Letters, 11(182), 1-9. Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M. & Ahalawat,S. (2013).Beneficial role of nanosilica in cement based materials–A review. Construction and Building Materials, 47, 1069-1077.
Sobolev, K. & Gutiérrez, M. F. (2005). How nanotechnology can change the concrete world. American Ceramic Society Bulletin, 84(10), 14-18. Stefanidou, M. & Papayianni, I. (2012). Influence of nano-SiO2 on the Portland cement pastes. Composites Part B: Engineering, 43(6), 2706-2710.
Yazdi, N.A., Arefi, M.R., Mollaahmadi, E. & Nejand, B.A. (2011). To study the effect of adding Fe2O3 nanoparticles on the morphology properties and microstructure of cement mortar. Life Science Journal, 8(4), 550–554.
Yousef Mohamed, A. S. (2015). Nano-innovation in construction, a new era of sustainability. International Conference on Environment and Civil Engineering (ICEACE’2015) April 24-25, 2015, Pattaya (Thailand). Yu, R., Spiesz, P. & Brouwers, H. J. H. (2014). Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Construction and Building Materials, 65, 140-150.